Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 361: 121289, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38820797

ABSTRACT

In recent years, copper-based nanomaterials (Cu-based NMs) have shown great potential in promoting agriculture development due to their special physicochemical characteristics. With the mass production and overuse of Cu-based NMs, there are potential effects on the soil-plant environment. Soil organisms, especially soil microorganisms, play a significant part in terrestrial or soil ecosystems; plants, as indirect organisms with soil-related Cu-based NMs, may affect human health through plant agricultural products. Understanding the accumulation and transformation of Cu-based NMs in soil-plant systems, as well as their ecotoxicological effects and potential mechanisms, is a prerequisite for the scientific assessment of environmental risks and safe application. Therefore, based on the current literature, this review: (i) introduces the accumulation and transformation behaviors of Cu-based NMs in soil and plant systems; (ii) focuses on the ecotoxicological effects of Cu-based NMs on a variety of organisms (microorganisms, invertebrates, and plants); (iii) reveals their corresponding toxicity mechanisms. It appears from studies hitherto made that both Cu-based NMs and released Cu2+ may be the main reasons for toxicity. When Cu-based NMs enter the soil-plant environment, their intrinsic physicochemical properties, along with various environmental factors, could also affect their transport, transformation, and biotoxicity. Therefore, we should push for intensifying the multi-approach research that focuses on the behaviors of Cu-based NMs in terrestrial exposure environments, and mitigates their toxicity to ensure the promotion of Cu-based NMs.


Subject(s)
Copper , Nanostructures , Plants , Soil Pollutants , Soil , Nanostructures/toxicity , Copper/toxicity , Copper/chemistry , Plants/drug effects , Soil/chemistry , Soil Pollutants/toxicity , Ecosystem , Soil Microbiology , Agriculture
2.
Foods ; 13(8)2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38672820

ABSTRACT

Postharvest rot, caused by Penicillium expansum, in tomatoes poses significant economic and health risks. Traditional control methods, such as the use of fungicides, raise concerns about pathogen resistance, food safety, and environmental impact. In search of sustainable alternatives, plant secondary metabolites, particularly phenolic compounds and their derivatives, have emerged as promising natural antimicrobials. Among these, feruloyl glyceride (FG), a water-soluble derivative of ferulic acid, stands out due to its antioxidant properties, antibacterial properties, and improved solubility. In this study, we provide evidence demonstrating FG is capable of inhibiting the spore germination of P. expansum and effectively reducing the incidence rate of Penicillium rot of tomatoes, without compromising quality. Electron microscopy observations combined with metabolite and transcriptomic analyses revealed that FG treatments resulted in enhanced suberin accumulation through promoting the expression of suberin synthesis related genes and, consequently, inhibited the growth and expansion of P. expansum on the fruits. This work sheds light on the mechanisms underlying FG's inhibitory effects, allowing its potential application as a natural and safe alternative to replace chemical fungicides for postharvest preservation.

3.
PLoS Genet ; 20(1): e1011107, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38181050

ABSTRACT

Eukaryotic chromatin is organized into either silenced heterochromatin or relaxed euchromatin regions, which controls the accessibility of transcriptional machinery and thus regulates gene expression. In fission yeast, Schizosaccharomyces pombe, Set1 is the sole H3K4 methyltransferase and is mainly enriched at the promoters of actively transcribed genes. In contrast, Clr4 methyltransferase initiates H3K9 methylation, which has long been regarded as a hallmark of heterochromatic silencing. Lsd1 and Lsd2 are two highly conserved H3K4 and H3K9 demethylases. As these histone-modifying enzymes perform critical roles in maintaining histone methylation patterns and, consequently, gene expression profiles, cross-regulations among these enzymes are part of the complex regulatory networks. Thus, elucidating the mechanisms that govern their signaling and mutual regulations remains crucial. Here, we demonstrated that C-terminal truncation mutants, lsd1-ΔHMG and lsd2-ΔC, do not compromise the integrity of the Lsd1/2 complex but impair their chromatin-binding capacity at the promoter region of target genomic loci. We identified protein-protein interactions between Lsd1/2 and Raf2 or Swd2, which are the subunits of the Clr4 complex (CLRC) and Set1-associated complex (COMPASS), respectively. We showed that Clr4 and Set1 modulate the protein levels of Lsd1 and Lsd2 in opposite ways through the ubiquitin-proteasome-dependent pathway. During heat stress, the protein levels of Lsd1 and Lsd2 are upregulated in a Set1-dependent manner. The increase in protein levels is crucial for differential gene expression under stress conditions. Together, our results support a cross-regulatory model by which Set1 and Clr4 methyltransferases control the protein levels of Lsd1/2 demethylases to shape the dynamic chromatin landscape.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Histones/genetics , Histones/metabolism , Histone-Lysine N-Methyltransferase/genetics , Histone-Lysine N-Methyltransferase/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Heterochromatin/metabolism , Transcription Factors/genetics
4.
J Fungi (Basel) ; 9(1)2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36675948

ABSTRACT

Biological control of postharvest diseases has been proven to be an effective alternative to chemical control. As an environmentally friendly biocontrol agent, Bacillus subtilis has been widely applied. This study explores its application in kiwifruit soft rot and reveals the corresponding mechanisms. Treatment with cell-free supernatant (CFS) of Bacillus subtilis BS-1 significantly inhibits the mycelial growth of the pathogen Botryosphaeria dothidea and attenuates the pathogenicity on kiwifruit in a concentration-dependent manner. In particular, mycelial growth diameter was only 21% of the control after 3 days of treatment with 5% CFS. CFS caused swelling and breakage of the hyphae of B. dothidea observed by scanning electron microscopy, resulting in the leakage of nucleic acid and soluble protein and the loss of ergosterol content. Further analysis demonstrated that CFS significantly induces the expression of Nox genes associated with reactive oxygen species (ROS) production by 1.9-2.7-fold, leading to a considerable accumulation of ROS in cells and causing mycelial cell death. Our findings demonstrate that the biocontrol effect of B. subtilis BS-1 CFS on B. dothidea is realized by inducing oxidative damage to the mycelia cell.

5.
Int J Phytoremediation ; 25(7): 822-831, 2023.
Article in English | MEDLINE | ID: mdl-35996867

ABSTRACT

Mining activities have led to Cu and Cd contaminated of surrounding agricultural soil. To decrease the Cu and Cd accumulation in crops, the Ricinus communis L. (castor) has been used for phytoremediation. A pot experiment was served to investigate the effect of phosphate fertilizer (Ca(H2PO4)2) on the growth and Cu/Cd uptake of castor in contaminated soil. The results showed that the application of P fertilizer improved the leaf cell morphology, decreased the malonaldehyde (MDA) content of castor leaves, and increased the plant biomass (28.2-34.2%). Besides, phosphate fertilizer still facilitated accumulation Cu and Cd by castor. The addition of phosphate fertilizer increased the contents of Cu in the root of castor, improved the bioconcentration factor (BCF) of Cu, and observably enhanced the accumulation of Cu (up to 201 µg/plant) in castor. Applying phosphorus increased the percentage of residual Cd, diminished the percentage of acid extractable Cd in soil, and the accumulation of Cd in castor was not significantly increased. These results suggest that phosphorus alleviated the stress of heavy metals on castor leaves and enhanced the accumulation of Cu and Cd in castor by promoting the growth of castor.


Applying phosphate fertilizer effectively alleviated the stress of heavy metals on castor and significantly increased the biomass of castor.The reason of applying phosphorus enhanced the castor uptake Cu and Cd was that phosphorus promoted the growth of castor.Applying phosphorus markedly increased the percentage of residual Cd but diminished the percentage of acid extractable Cd in soil.


Subject(s)
Metals, Heavy , Soil Pollutants , Cadmium , Biodegradation, Environmental , Phosphorus , Fertilizers/analysis , Metals, Heavy/analysis , Phosphates , Soil , Ricinus , Soil Pollutants/analysis
6.
Chemosphere ; 299: 134286, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35304216

ABSTRACT

Organic acids usually compete the immobilization of As by iron (hydro)oxides, but their oxidizing effects are ignored. Therefore, the gallic acid (GA) with strong redox activity was chosen to investigate the influence of arsenite [As(III)] oxidation on As immobilization by ferrihydrite. Our results found that the As amount adsorbed on ferrihydrite decreased with the pH rising from 5 to 9 in the presence of GA, and the adsorption amount (28.8 g kg-1) at pH 9 was 45.1% lower than that in the absence of GA. Meanwhile, the As adsorption amounts in treatments of GA addition before As (Fh-GA-As(III)) were significantly lower than that in their corresponding simultaneous addition (Fh-As(III)/GA). The proportions of As(V)/Astotal on ferrihydrite and in equilibrium suspension were increased as the pH increased in the presence of GA, and the highest oxidation efficiency of As(III) by GA at pH 9 was 90.3%, which was mainly due to the contribution of hydrogen peroxide (H2O2, 52.6%) and semiquinone radicals (SQ-, 27.1%). In general, the oxidation and competition adsorption of As by GA inhibited the As immobilization by ferrihydrite, and the oxidation of As(III) by GA was strongly dependent on pH, while H2O2 and SQ- were demonstrated as the main oxidant at pH 9.


Subject(s)
Arsenic , Adsorption , Ferric Compounds , Gallic Acid , Hydrogen Peroxide , Organic Chemicals , Oxidation-Reduction
7.
Environ Sci Pollut Res Int ; 29(27): 40745-40754, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35083675

ABSTRACT

The opposed transformation of arsenic (As) and cadmium (Cd) in paddy soil postures numerous challenges for their simultaneous remediation. An incubation study was conducted on the immobilization of Cd and As by biochar (BC), goethite (G), goethite-combined biochar (BC + G), and goethite-modified biochar (GBC). The results showed that biochar effectively immobilized Cd while significantly increasing As mobility, whereas goethite effectively immobilized As more than Cd. BC + G treatment significantly decreased toxicity characteristics leaching procedure (TCLP) and CaCl2-extractable Cd by 22.70% and 40.15%; meanwhile, TCLP and NaHCO3-As were significantly reduced by 38.25% and 31.87%, respectively, compared with the control. This study found that GBC was the optimum amendment within the immobilization efficiency for CaCl2-Cd (57.03%) and TCLP-As (61.11%). BC + G and GBC applications showed some interactions between biochar and goethite, which played an essential role in immobilizing Cd and As simultaneously. Therefore, GBC showed a great benefit in being a low-cost and efficient environmental amendment for Cd and As remediation in alkaline co-contaminated paddy soil.


Subject(s)
Arsenic , Oryza , Soil Pollutants , Cadmium/analysis , Calcium Chloride , Charcoal , Iron Compounds , Minerals , Soil , Soil Pollutants/analysis
8.
Nat Prod Res ; 35(16): 2647-2654, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34414849

ABSTRACT

During the systematic screening of bioactive compounds from our marine natural product library, crude extract of the marine-derived fungus strain Aspergillus fumigatus MF029 exhibited moderate bioactivities against Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus, and Mycobacterium bovis bacillus Calmette-Guérin (BCG). Further chemical investigation resulted in the identification of two new compounds, chaetominine A (1) and sphingofungin I (2), together with four known compounds, emodin (3), chaetominine (4), sphingofungin D (5) and trypacidin (6). Trypacidin displayed potential antitubercular activity with MIC value of 1.25 µg/mL.


Subject(s)
Antitubercular Agents , Aspergillus fumigatus , Biological Products/pharmacology , Antitubercular Agents/isolation & purification , Antitubercular Agents/pharmacology , Aquatic Organisms , Aspergillus fumigatus/chemistry , Biological Products/isolation & purification , Microbial Sensitivity Tests
9.
Nat Prod Res ; 34(20): 2907-2912, 2020 Oct.
Article in English | MEDLINE | ID: mdl-31009246

ABSTRACT

A new xanthenone derivative, 3-hydroxy pinselin (1), together with five known analogues (2-6) were isolated from the marine-derived fungus Aspergillus versicolor MF160003. Their structures were identified by extensive 1D- and 2D-NMR, and high-resolution mass spectrometry data. Compounds 5 and 6 showed moderate bioactivities against BCG with MIC values of 40 and 20 µg/mL, respectively.


Subject(s)
Aspergillus/chemistry , Xanthenes/isolation & purification , Magnetic Resonance Spectroscopy , Mass Spectrometry , Microbial Sensitivity Tests , Molecular Structure , Mycobacterium bovis/drug effects , Xanthenes/chemistry , Xanthenes/pharmacology
10.
Mar Drugs ; 17(5)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052556

ABSTRACT

Six new diketopiperazines, (±)-7,8-epoxy-brevianamide Q ((±)-1), (±)-8-hydroxy-brevianamide R ((±)-2), and (±)-8-epihydroxy-brevianamide R ((±)-3), together with four known compounds, (±)-brevianamide R ((±)-4), versicolorin B (5) and averufin (6), were isolated from a marine-derived fungus strain Aspergillus versicolor MF180151, which was recovered from a sediment sample collected from the Bohai Sea, China. The chemical structures were established by 1D- and 2D-NMR spectra and HR-ESI-MS. 1 is the first sample of brevianamides with an epoxy moiety. Their bioactivities were evaluated against Candida albicans, Bacillus subtilis, Staphylococcus aureus, methicillin-resistant S. aureus, Pseudomonas aeruginosa, and Bacillus Calmette-Guérin. Compounds 1-4 showed no activities against the pathogens, and compounds 5 and 6 showed moderate activities against S. aureus and methicillin-resistant S. aureus.


Subject(s)
Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Aspergillus/chemistry , Diketopiperazines/chemistry , Diketopiperazines/pharmacology , Anti-Infective Agents/isolation & purification , Bacillus subtilis/drug effects , Candida albicans/drug effects , China , Diketopiperazines/isolation & purification , Microbial Sensitivity Tests , Molecular Structure , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
11.
Eur J Med Chem ; 162: 348-363, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-30448420

ABSTRACT

Accetohydroxyacid synthase (AHAS) is the first enzyme involved in the biosynthetic pathway of branched-chain amino acids. Earlier gene mutation of Candida albicans in a mouse model suggested that this enzyme is a promising target of antifungals. Recent studies have demonstrated that some commercial AHAS-inhibiting sulfonylurea herbicides exerted desirable antifungal activity. In this study, we have designed and synthesized 68 novel ethoxysulfulron (ES) derivatives and evaluated their inhibition constants (Ki) against C. albicans AHAS and cell based minimum inhibitory concentration (MIC) values. The target compounds 5-1, 5-10, 5-22, 5-31 and 5-37 displayed stronger AHAS inhibitions than ES did. Compound 5-1 had the best Ki of 6.7 nM against fungal AHAS and MIC values of 2.5 mg/L against Candida albicans and Candica parapsilosis after 72 h. A suitable nematode model was established here and the antifungal activity of 5-1 was further evaluated in vivo. A possible binding mode was simulated via molecular docking and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationship. The current study has indicated that some ES derivatives should be considered as promising hits to develop antifungal drugs with novel biological target.


Subject(s)
Acetolactate Synthase/antagonists & inhibitors , Antifungal Agents/chemistry , Quantitative Structure-Activity Relationship , Sulfonylurea Compounds/pharmacology , Animals , Antifungal Agents/pharmacology , Candida albicans/drug effects , Enzyme Inhibitors/pharmacology , Herbicides , Mice , Molecular Docking Simulation , Nematoda/drug effects , Sulfonylurea Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...