Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(8): 8947-8953, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434805

ABSTRACT

The ignition of anthracite with arc plasma has not been applied due to its low chemical effect and volatile content in anthracite. The nonequilibrium plasma generated by a microwave-induced discharge has the ability to break branch chains and aromatic ring structures by kinetic effects, which has the potential for anthracite cracking and ignition. This work investigated anthracite cracking by microwave-induced discharges under an Ar/N2 atmosphere. Results showed that the maximum levels of CO production, total gas production, and total gas generation rate occur in 20% argon content due to an increase in the number of electrons and a decrease in the total electronic states excitation rate constant with an increase in the argon content. The total gas production in plasma cracking is larger than that by pyrolysis, indicating the crack of polycyclic aromatic hydrocarbon by plasma. In addition, we attempted anthracite combustion under an 80% N2 and 20% O2 atmosphere.

2.
Chem Soc Rev ; 53(9): 4648-4673, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38525837

ABSTRACT

Given the critical importance of novel ligand development for transition-metal (TM) catalysis, as well as the resurgence of the field of organosilicon chemistry and silyl ligands, to summarize the topic of X-type silyl ligands for TM catalysis is highly attractive and timely. This review particularly emphasizes the unique σ-donating characteristics and trans-effects of silyl ligands, highlighting their crucial roles in enhancing the reactivity and selectivity of various catalytic reactions, including small molecule activation, Kumada cross-coupling, hydrofunctionalization, C-H functionalization, and dehydrogenative Si-O coupling reactions. Additionally, future developments in this field are also provided, which would inspire new insights and applications in catalytic synthetic chemistry.

3.
Environ Res ; 251(Pt 2): 118671, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38479719

ABSTRACT

The low cost and high efficiency of microwave-assisted regeneration render it a viable alternative to conventional regeneration methods. To enhance the regeneration performance, we developed a coupled electromagnetic, heat, and mass transfer model to investigate the heat and mass transfer mechanisms of activated carbon during microwave-assisted regeneration. Simulation results demonstrated that the toluene desorption process is governed by temperature distribution. Changing the input power and flow rate can promote the intensity of hot spots and adjust their distribution, respectively, thereby accelerating toluene desorption, inhibiting readsorption, and promoting regeneration efficiency. Ultimately, controlling the input power and flow rate can flexibly adjust toluene emissions to satisfy the processing demands of desorbed toluene. Taken together, this study provides a comprehensive understanding of the heat and mass transfer mechanisms of microwave-assisted regeneration and insights into adsorbent regeneration.


Subject(s)
Charcoal , Hot Temperature , Microwaves , Toluene , Toluene/chemistry , Adsorption , Charcoal/chemistry , Models, Chemical
4.
Mater Horiz ; 11(7): 1719-1731, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38277153

ABSTRACT

Efforts to enhance the efficiency of electrocatalysts for the oxygen reduction reaction (ORR) in energy conversion and storage devices present formidable challenges. In this endeavor, M-N4-C single-atom catalysts (MN4) have emerged as promising candidates due to their precise atomic structure and adaptable electronic properties. However, MN4 catalysts inherently introduce oxygen functional groups (OGs), intricately influencing the catalytic process and complicating the identification of active sites. This study employs advanced density functional theory (DFT) calculations to investigate the profound influence of OGs on ORR catalysis within MN4 catalysts (referred to as OGs@MN4, where M represents Fe or Co). We established the following activity order for the 2eORR: for OGs@CoN4: OH@CoN4 > CoN4 > CHO@CoN4 > C-O-C@CoN4 > COC@CoN4 > COOH@CoN4 > CO@CoN4; for OGs@FeN4: COC@FeN4 > CO@FeN4 > OH@FeN4 > FeN4 > COOH@FeN4 > CHO@FeN4 > C-O-C@FeN4. Multiple oxygen combinations were constructed and found to be the true origin of MN4 activity (for instance, the overpotential of 2OH@CoN4 as low as 0.07 V). Furthermore, we explored the performance of the OGs@MN4 system through charge and d-band center analysis, revealing the limitations of previous electron-withdrawing/donating strategies. Machine learning analysis, including GBR, GPR, and LINER models, effectively guides the prediction of catalyst performance (with an R2 value of 0.93 for predicting ΔG*OOH_vac in the GBR model). The Eg descriptor was identified as the primary factor characterizing ΔG*OOH_vac (accounting for 62.8%; OGs@CoN4: R2 = 0.9077, OGs@FeN4: R2 = 0.7781). This study unveils the significant impact of OGs on MN4 catalysts and pioneers design and synthesis criteria rooted in Eg. These innovative findings provide valuable insights into understanding the origins of catalytic activity and guiding the design of carbon-based single-atom catalysts, appealing to a broad audience interested in energy conversion technologies and materials science.

5.
Angew Chem Int Ed Engl ; 62(36): e202307812, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37462125

ABSTRACT

Catalytic enantioselective intermolecular C-H silylation offers an efficient approach for the rapid construction of chiral organosilicon compounds, but remains a significant challenge. Herein, a new type of chiral silyl ligand is developed, which enables the first iridium-catalyzed atroposelective intermolecular C-H silylation reaction of 2-arylisoquinolines. This protocol features mild reaction conditions, high atom economy, and remarkable yield with excellent stereoselectivity (up to 99 % yield, 99 % ee), delivering enantioenriched axially chiral silane platform molecules with facile convertibility. Key to the success of this unprecedented transformation relies on a novel chiral PSiSi-ligand, which facilitates the intermolecular C-H silylation process with perfect chem-, regio- and stereo-control via a multi-coordinated silyl iridium complex.

6.
Chemistry ; 29(19): e202203475, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36617499

ABSTRACT

Silanols are valuable and important compounds, which have found widespread applications in the field of materials science, synthetic chemistry, and medicinal chemistry. Although a handful of approaches have been developed for the synthesis of various silanols, access to enantioenriched silicon-stereogenic silanols remains underdeveloped. This Concept article intends to summarize and highlight recent advances in the construction of silicon-stereogenic silanols and endeavors to encourage further research in this area.

7.
Crit Rev Food Sci Nutr ; 63(7): 947-963, 2023.
Article in English | MEDLINE | ID: mdl-34309422

ABSTRACT

Dough rheology improvers, which often are oxidative reagents in nature, have long been used in bread-making industry to enhance protein crosslinking and subsequently improve the dough rheological properties and bread qualities. Numerous studies were conducted to explore the effects of these oxidative agents on dough quality improving, however, the underlying mechanism of their action during dough development has not been fully understood. Due to the public health concerns, multiple oxidative reagents were banned in some countries across the world, while others are still permitted in accordance with regulations. Therefore, a comprehensive understanding of their application, significance, and safety in bread manufacturing is necessary. This review aims to provide a detailed information about the evolutionary history of several commonly used oxidants acting as dough rheology improvers, their mechanisms of action, as well as their potential toxicity.


Subject(s)
Bread , Glutens , Rheology , Public Health , Flour
8.
Molecules ; 27(12)2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35744870

ABSTRACT

Satsuma mandarin peel pectin was extracted by high hydrostatic pressure-assisted citric acid (HHPCP) or hydrochloric acid (HHPHP), and the physiochemical, structural, rheological and emulsifying characteristics were compared to those from conventional citric acid (CCP) and hydrochloric acid (CHP). Results showed that HHP and citric acid could both increase the pectin yield, and HHPCP had the highest yield (18.99%). Structural characterization, including NMR and FTIR, demonstrated that HHPHP showed higher Mw than the other pectins. The viscosity of the pectin treated with HHP was higher than that obtained with the conventional method, with HHPHP exhibiting significantly higher viscosity. Interestingly, all the pectin emulsions showed small particle mean diameters (D4,3 being 0.2-1.3 µm) and extremely good emulsifying stability with centrifugation and 30-day storage assays, all being 100%. Satsuma mandarin peel could become a highly promising pectin source with good emulsifying properties, and HHP-assisted acid could be a more efficient method for pectin extraction.


Subject(s)
Citrus , Pectins , Citric Acid/chemistry , Citrus/chemistry , Hydrochloric Acid , Hydrostatic Pressure , Pectins/chemistry
9.
J Colloid Interface Sci ; 613: 47-56, 2022 May.
Article in English | MEDLINE | ID: mdl-35032776

ABSTRACT

Catalytic oxidation plays important roles in energy conversion and environment protection. Boron-doped crystalline carbocatalyst has been demonstrated effective; however, the application potential of boron-doped amorphous carbocatalyst remains to be explored. For amorphous carbon material, finite-sized carbon clusters are the basic structural units, which exhibit unique activity due to edge and size effect. Herein, using sulfur dioxide (SO2) and carbon monoxide (CO) oxidation as probe thermal-catalysis reactions, we found the distribution and reactivity of active sites in boron-doped carbon clusters are simultaneously determined by dopants and edges. According to comparisons of oxygen (O2) chemisorption energy at different sites of symmetric and non-symmetric carbon cluster, the most active site is found to be the edge carbon atom with high electron donation ability, which can be accurately identified by electrophilic Fukui function. More importantly, the reactivity of boron-doped cluster is simultaneously influenced by doping configuration and the type of edge, based on which -O-B-O- configuration embedded into K-region edge (isolated carbon-carbon double bonds that do not belong to Clar sextet) is predicted to exhibit the highest reactivity among various boron doping configurations. This work clarifies unique activity origin of heteroatom-doped amorphous carbon materials, providing new insights into designing high-performance carbocatalysts.

10.
Biomaterials ; 280: 121275, 2022 01.
Article in English | MEDLINE | ID: mdl-34847431

ABSTRACT

Gluten network formed by oxidation of glutenin sulfhydryl groups is the determinant of dough rheological properties, while chemical reagents including oxidants and reductants are both used as dough rheology improvers under different circumstances. This study compares the impact of sodium metabisulfite (SMBS) and azodicarbonamide (ADA), as the representative reductive and oxidative dough improvers, at series of concentrations that offer or remove the same number of electrons form dough, respectively. The alveographic characterization, protein distribution and glutenin composition analysis, and free sulfhydryl measurement were performed on dough containing redox equivalent SMBS or ADA. Finally, at each optimal concentration, the dough protein network was analyzed with confocal microscopy. Results showed that SMBS increased the free sulfhydryl content, loosened the microstructure of gluten network, and thus enhanced dough extensibility. ADA reduced the free sulfhydryl content, compacted the dough microstructure, thus enhanced the tenacity and baking strength of dough. It is therefore proposed that the reductants reduce disulfide bonds in gluten network and renders the formation of one-dimensional gluten network while oxidants promote the disulfide linkage and formation of three-dimensional gluten network. This study offers a theoretic foundation of differentiating dough rheology improvers for their specified application.


Subject(s)
Bread , Flour , Bread/analysis , Flour/analysis , Glutens/chemistry , Oxidation-Reduction , Oxidative Stress , Rheology , Triticum/chemistry
11.
J Colloid Interface Sci ; 610: 934-943, 2022 Mar 15.
Article in English | MEDLINE | ID: mdl-34863547

ABSTRACT

Oxygen-doped carbon materials (OCM) have received a lot of attention for catalyzing the two-electron oxygen reduction reaction (2eORR) towards hydrogen peroxide generation, but the origin of their activity is not well understood. Based on density functional theory calculations, we introduce the Fukui function (f0), a more comprehensive and accurate method for identifying active sites and systematically investigating the activity of carbon materials doped with typical oxygen functional groups (OGs). According to the results, only ether or carbonyl has the potential to become the activity origin. The 2eORR activities of carbon materials co-doped by different OGs were then investigated, and a significant synergistic effect was discovered between different OGs (particularly between epoxy and other OGs), which might be the real active centers in OCM. To further understand the cause of the activity, the Fundamental Gap (Eg) was introduced to investigate the ability of various OCM to gain and lose electrons. The results show that the decrease in overpotential after oxygen co-doping can be attributed to the decrease in Eg. This work introduces descriptors (f0 and Eg) that can aid in the efficient design of catalysts and adds to our understanding of the 2eORR activity origin of OCM.


Subject(s)
Carbon , Oxygen , Electrons , Hydrogen Peroxide , Nitrogen , Oxidation-Reduction
12.
Nutrients ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36615767

ABSTRACT

The deposition of ß-amyloid (Aß) in the brain leads to neurotoxic effects and subsequent Alzheimer's disease (AD). While AD is becoming more and more prevalent in modern society, therapeutic efforts targeting Aß could be a promising solution. Currently, two natural products are reported to disintegrate preformed Aß fibril in vitro. Meanwhile, the chemical driving force behind this phenomenon remains unknown. Taking cyanidin-3-O-glucoside (Cy-3G) as an example, here we studied its interaction with different Aß polymorphs in silico. Negative charges on different Aß polymorphs draw the interaction with the flavylium cation on Cy-3G. Our results show that Aß in a single peptide form in solution exposed more hydrophobic solvent accessible surface area than its fibril structure (per protomer), and Cy-3G interacts more intensively with the single peptide form than fibril as indicated by more hydrogen bonding formed and more amino acid residues involved in their hydrophobic interactions. Thus, the single Aß peptide aggregation into fibril and fibril dissociation into single peptide equilibrium could be disturbed by the preferential binding of Cy-3G to the monomeric Aß peptide, which leads to the disassembly of the pathogenic Aß fibril. This study offers a novel perspective of Cy-3G alleviated AD syndrome beyond its dogmatic antioxidant activity.


Subject(s)
Amyloid beta-Peptides , Peptide Fragments , Peptide Fragments/metabolism , Amyloid beta-Peptides/metabolism , Anthocyanins , Glucosides
13.
ACS Omega ; 6(49): 33735-33746, 2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34926922

ABSTRACT

Nanoporous carbons (NPCs) are ideal materials for the dry process of flue gas desulfurization (FGD) due to their rich pore structure and high specific surface area. To study the effect of edge-functionalized NPCs on the physisorption mechanism of sulfur dioxide, different functional groups were embedded at the edge of NPCs, and the physisorption behavior was simulated using the grand canonical Monte Carlo method (GCMC) combined with density functional theory (DFT). The results indicated that the insertion of acidic oxygenous groups or basic nitrogenous groups into NPCs could enhance the physisorption of SO2. The influence of edge functionalization on the pore structure of NPCs is also analyzed. To further explore the interaction in the adsorption process, the van der Waals (vdW) interaction and electrostatic interaction between the SO2 molecule and the basic structural unit (BSU) were investigated. Simulated results showed that edge functionalization had limited influence on vdW interaction and did not significantly change the distribution characteristics of vdW interaction. According to the study on electrostatic interaction, edge functionalization was found to promote inhomogeneity of the surface charge of the adsorbent, enhance the polarity of the adsorbent, and thus enhance the physisorption capacity of SO2. More importantly, we provide an idea for studying the difference in adsorption capacity caused by different functional groups connected to carbon adsorbents.

14.
Nutrients ; 13(10)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34684397

ABSTRACT

Crustacean allergy, especially to shrimp, is the most predominant cause of seafood allergy. However, due to the high flexibility of immunoglobulin E (IgE), its three-dimensional structure remains unsolved, and the molecular mechanism of shrimp allergen recognition is unknown. Here a chimeric IgE was built in silico, and its variable region in the light chain was replaced with sequences derived from shrimp tropomyosin (TM)-allergic patients. A variety of allergenic peptides from the Chinese shrimp TM were built, treated with heating, and subjected to IgE binding in silico. Amino acid analysis shows that the amino acid residue conservation in shrimp TM contributes to eliciting an IgE-mediated immune response. In the shrimp-allergic IgE, Glu98 in the light chain and other critical residues that recognize allergens from shrimp are implicated in the molecular basis of IgE-mediated shrimp allergy. Heat treatment could alter the conformations of TM allergenic peptides, impact their intramolecular hydrogen bonding, and subsequently decrease the binding between these peptides and IgE. We found Glu98 as the characteristic amino acid residue in the light chain of IgE to recognize general shrimp-allergic sequences, and heat-induced conformational change generally desensitizes shrimp allergens.


Subject(s)
Allergens/immunology , Food Hypersensitivity/immunology , Immunoglobulin E/immunology , Penaeidae/immunology , Shellfish , Tropomyosin/chemistry , Tropomyosin/immunology , Allergens/chemistry , Amino Acid Sequence , Animals , Epitopes/immunology , Food Hypersensitivity/therapy , Hot Temperature , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Immunoglobulin E/chemistry , Immunoglobulin E/metabolism , Immunosuppression Therapy , Models, Molecular , Molecular Dynamics Simulation , Peptide Fragments/chemistry , Peptide Fragments/immunology , Peptide Fragments/metabolism , Protein Conformation , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/immunology , Sequence Alignment , Tropomyosin/metabolism
15.
Sep Purif Technol ; 2622021 May 01.
Article in English | MEDLINE | ID: mdl-34366698

ABSTRACT

H2O2 generation by 2-electron oxygen electroreduction reaction (2eORR) has attracted great attention as an alternative to the industry-dominant anthraquinone process. Electro-Fenton (EF) process, which relies on the H2O2 electrogeneration, is regarded as an important environmental application of H2O2 generation by 2eORR. However, its application is hindered by the relatively expensive electrode materials. Proposing cathode materials with low cost and facile synthetic procedures are the priority to advance the EF process. In this work, a composite cathode structure that uses graphitic granular bamboo-based biochar (GB) and stainless steel (SS) mesh (GBSS) is proposed, where SS mesh functions as current distributor and GB supports synergistic H2O2 electrogeneration and activation. The graphitic carbon makes GB conductive and the oxygen-containing groups serve as active sites for H2O2 production. 11.3 mg/L H2O2 was produced from 2.0 g GB at 50 mA after 50 min under neutral pH without external O2/air supply. The O-doped biochar further increased the H2O2 yield to 18.3 mg/L under same conditions. The GBSS electrode is also effective for H2O2 activation to generate ·OH, especially under neutral pH. Ultimately, a neutral Fe-free EF process enabled by GBSS cathode is effective for removal of various model organic pollutants (reactive blue 19, orange II, 4-nitrophenol) within 120 min, and for their partial mineralization (48.4% to 63.5%). Long-term stability of the GBSS electrode for H2O2 electrogeneration, H2O2 activation, and pollutants degradation were also examined and analyzed. This work offers a promising application for biomass waste for removals of organic pollutants in neutral Fe-free EF process.

16.
Front Nutr ; 8: 647750, 2021.
Article in English | MEDLINE | ID: mdl-34095188

ABSTRACT

Celiac disease (CD) is a prevalent disorder with autoimmune features. Dietary exposure of wheat gluten (including gliadins and glutenins) to the small intestine activates the gluten-reactive CD4+ T cells and controls the disease development. While the human leukocyte antigen (HLA) is the single most important genetic factor of this polygenic disorder, HLA-DQ2 recognition of gluten is the major biological step among patients with CD. Gluten epitopes are often rich in Pro and share similar primary sequences. Here, we simulated the solution structures changes of a variety of gluten epitopes under different pH and temperatures, to mimic the fermentation and baking/cooking processes. Based on the crystal structure of HLA-DQ2, binding of differently processed gluten epitopes to DQ2 was studied in silico. This study revealed that heating and pH change during the fermentation process impact the solution structure of gluten epitope. However, binding of differently treated gluten epitope peptide (GEP) to HLA-DQ2 mainly depended on its primary amino acid sequence, especially acidic amino acid residues that play a pivotal role in their recognition by HLA-DQ2.

17.
Chemosphere ; 278: 130382, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33823343

ABSTRACT

Hydrogen peroxide (H2O2) electrosynthesis from 2-electron O2 reduction reaction (2eORR) is widely regarded as a promising alternative to the current industry-dominant anthraquinone process. Design and fabrication of effective, low-cost carbon-based electrodes is one of the priorities. Many previous work well confirmed that hydrophilic carbon-based electrodes are preferable for 2eORR. Here, we proposed a strategy of hydrophilicity-hydrophobicity regulation. By using commercially available graphite felt (GF) as electrodes, we showed that both hydrophilic GF, hydrophobic GF, and Janus GF yielded significantly higher H2O2 production, which is 7.3 times, 7.6 times, and 7.7 times higher than the original GF, respectively. Results showed that currents and stirring rates affect the H2O2 yields. The enhancement of hydrophilic GF is due to the incorporation of oxygen-containing functional groups, while the hydrophobic and Janus GF comes from the locally confined O2 bubbles, which built a gas-liquid-solid interface inside GF and thus enhance the H2O2 formation kinetics. Finally, the effectiveness of the hydrophilicity-hydrophobicity regulation concept was tested in Electro-Fenton process by removing typical dyes and antibiotics. This work supply an effective but facile strategy to enhance the performance of carbon-based electrodes towards 2eORR by regulating the micro-environment of electrodes.


Subject(s)
Graphite , Water Pollutants, Chemical , Electrodes , Hydrogen Peroxide , Hydrophobic and Hydrophilic Interactions , Iron , Oxidation-Reduction , Oxygen
18.
Org Lett ; 23(2): 486-490, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33378207

ABSTRACT

A highly regioselective nickel-based catalyst system for the isomerization/hydrocyanation of aliphatic internal olefins is described. This benign tandem reaction provides facile access to a wide variety of aliphatic nitriles in good yields with excellent regioselectivities. Thanks to Lewis acid-free conditions, the protocol features board functional groups tolerance, including secondary amine and unprotected alcohol groups.

19.
Angew Chem Int Ed Engl ; 60(4): 1883-1890, 2021 Jan 25.
Article in English | MEDLINE | ID: mdl-33021014

ABSTRACT

A regiodivergent nickel-catalyzed hydrocyanation of a broad range of internal alkenes involving a chain-walking process is reported. When appropriate diastereomeric biaryl diphosphite ligands are applied, the same starting materials can be converted to either linear or branched nitriles with good yields and high regioselectivities. DFT calculations suggested that the catalyst architecture determines the regioselectivity by modulating electronic and steric interactions. In addition, moderate enantioselectivities were observed when branched nitriles were produced.

20.
Org Lett ; 22(21): 8566-8571, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33085493

ABSTRACT

A Ni-catalyzed asymmetric hydrocyanation that enables the formation of 4-cyanotetrahydroquinolines in good yields with excellent enantioselectivities is presented herein. A variety of functional groups are well-tolerated, and a gram-scale reaction supports the synthetic potential of the transformation. Additionally, several crucial intermediates for pharmaceutically active agents, including a PGD2 receptor antagonist, are now accessible through asymmetric synthesis using this new protocol.

SELECTION OF CITATIONS
SEARCH DETAIL
...