Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(10): e2311720121, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38408234

ABSTRACT

Inner ear morphogenesis requires tightly regulated epigenetic and transcriptional control of gene expression. CHD7, an ATP-dependent chromodomain helicase DNA-binding protein, and SOX2, an SRY-related HMG box pioneer transcription factor, are known to contribute to vestibular and auditory system development, but their genetic interactions in the ear have not been explored. Here, we analyzed inner ear development and the transcriptional regulatory landscapes in mice with variable dosages of Chd7 and/or Sox2. We show that combined haploinsufficiency for Chd7 and Sox2 results in reduced otic cell proliferation, severe malformations of semicircular canals, and shortened cochleae with ectopic hair cells. Examination of mice with conditional, inducible Chd7 loss by Sox2CreER reveals a critical period (~E9.5) of susceptibility in the inner ear to combined Chd7 and Sox2 loss. Data from genome-wide RNA-sequencing and CUT&Tag studies in the otocyst show that CHD7 regulates Sox2 expression and acts early in a gene regulatory network to control expression of key otic patterning genes, including Pax2 and Otx2. CHD7 and SOX2 directly bind independently and cooperatively at transcription start sites and enhancers to regulate otic progenitor cell gene expression. Together, our findings reveal essential roles for Chd7 and Sox2 in early inner ear development and may be applicable for syndromic and other forms of hearing or balance disorders.


Subject(s)
Gene Regulatory Networks , Vestibule, Labyrinth , Animals , Mice , Cochlea , Gene Expression Regulation, Developmental , Mammals , Semicircular Canals , Transcription Factors
2.
EClinicalMedicine ; 64: 102151, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37745024

ABSTRACT

Background: In a previous phase 3 clinical trial, we showed that an inactivated poliovirus vaccine derived from the Sabin strain (sIPV) can induce neutralising antibodies against currently circulating and reference wild poliovirus strains. However, the immune persistence of sIPV remains to be evaluated. Methods: In this study, 400 participants who were eligible for an early phase 3 clinical trial (Jan 1, 2012-Aug 31, 2014) in Pingle County, GuanXi Province, China, were initially involved in one site. Of the participants in the previous phase 3 clinical trial, sera of 287, 262, 237, and 207 participants were sampled at the ages of 4, 6, 8, and 10 years, respectively, after the prime-boost regimen. Neutralising antibodies against attenuated Sabin strains were detected using these serum samples to determine immune persistence. The serum neutralising antibodies titre of 1:8 against poliovirus types 1, 2, and 3 is considered to be a seroprotection level for polio. The trial is registered at ClinicalTrials.gov, NCT01510366. Findings: The protective rates against poliovirus types 1, 2, and 3 in the sIPV group were all 100% at 10 years after the booster immunisation, compared with 98.1%, 100%, and 97.1%, respectively, in the wIPV control group after 10 years. After the booster at 18 months, the geometric mean titres (GMTs) of neutralising antibodies against poliovirus types 1, 2, and 3 in the sIPV group were 13,265.6, 7856.7, and 6432.2, respectively, and the GMTs in the control group (inoculated with inactivated poliovirus vaccine derived from wild strain (wIPV)) were 3915.6, 2842.6, and 4982.7, respectively. With increasing time after booster immunisation, the GMTs of neutralising antibodies against poliovirus types 1, 2, and 3 gradually decreased in both the sIPV and wIPV groups. At the age of ten years, the GMTs of neutralising antibodies against poliovirus types 1, 2, and 3 in the sIPV group were 452.3, 392.8, and 347.5, respectively, and the GMTs in the wIPV group 108.5, 154.8, and 229.3, respectively, which were still at a higher-than-protective level (1:8). Interpretation: Both sIPV and wIPV maintained sufficiently high immune persistence against poliovirus types 1, 2, and 3 for at least 10 years after booster immunisation. Funding: Yunnan Provincial Science and Technology Department, the Bill and Melinda Gates Foundation, the National High-tech Research and Development Program, the National International Science and Technology Cooperation Project, the Yunnan Application Basic Research Project, the Innovation Team Project of Xie He, the Yunnan International Scientific and Technological Cooperation Project, and the Medical and Technology Innovation Project of Xie He.

3.
J Microbiol Biotechnol ; 33(6): 760-770, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37072683

ABSTRACT

Continuous cropping obstacles have become a serious factor restricting sustainable development in modern agriculture, while companion planting is one of the most common and effective methods for solving this problem. Here, we monitored the effects of companion planting on soil fertility and the microbial community distribution pattern in pepper monoculture and companion plantings. Soil microbial communities were analyzed using high-throughput sequencing technology. Companion plants included garlic (T1), oat (T2), cabbage (T3), celery (T4), and white clover (T5). The results showed that compared with the monoculture system, companion planting significantly increased the activities of soil urease (except for T5) and sucrase, but decreased catalase activity. In addition, T2 significantly improved microbial diversity (Shannon index) while T1 resulted in a decrease of bacterial OTUs and an increase of fungal OTUs. Companion planting also significantly changed soil microbial community structures and compositions. Correlation analysis showed that soil enzyme activities were closely correlated with bacterial and fungal community structures. Moreover, the companion system weakened the complexity of microbial networks. These findings indicated that companion plants can provide nutrition to microbes and weaken the competition among them, which offers a theoretical basis and data for further research into methods for reducing continuous cropping obstacles in agriculture.


Subject(s)
Microbiota , Soil , Soil/chemistry , Bacteria/genetics , Agriculture , Vegetables , Soil Microbiology
4.
Front Plant Sci ; 14: 1107690, 2023.
Article in English | MEDLINE | ID: mdl-36890887

ABSTRACT

The daylily (Hemerocallis citrina Baroni)/other crop intercropping system can be a specific and efficient cropping pattern in a horticultural field. Intercropping systems contribute to the optimization of land use, fostering sustainable and efficient agriculture. In the present study, high-throughput sequencing was employed to explore the diversity in the root-soil microbial community in the intercropping of four daylily intercropping systems [watermelon (Citrullus lanatus)/daylily (WD), cabbage (Brassica pekinensis)/daylily (CD), kale (Brassica oleracea)/daylily (KD), watermelon/cabbage/kale/daylily (MI)], and determine the physicochemical traits and enzymatic activities of the soil. The results revealed that the contents of available potassium (2.03%-35.71%), available phosphorus (3.85%-62.56%), available nitrogen (12.90%-39.52%), and organic matter (19.08%-34.53%), and the urease (9.89%-31.02%) and sucrase (23.63%-50.60%) activities, and daylily yield (7.43%- 30.46%) in different intercropping soil systems were significantly higher compared to those in the daylily monocropping systems (CK). The bacterial Shannon index increased significantly in the CD and KD compared to the CK. In addition, the fungi Shannon index was also increased significantly in the MI, while the Shannon indices of the other intercropping modes were not significantly altered. Different intercropping systems also caused dramatic architectural and compositional alterations in the soil microbial community. A prominently higher relative richness of Bacteroidetes was noted in MI compared to that in CK, while Acidobacteria in WD and CD and Chloroflexi in WD were pronouncedly less abundant compared to those in CK. Furthermore, the association between soil bacteria taxa and soil characteristic parameters was stronger than that between fungi and soil. In conclusion, the present study demonstrated that the intercropping of daylily with other crops could significantly improve the nutrient levels of the soil and optimize the soil bacterial microflora composition and diversity.

5.
Crit Rev Anal Chem ; 53(5): 1066-1079, 2023.
Article in English | MEDLINE | ID: mdl-34802340

ABSTRACT

Since residual chiral pollutants in the environment and toxic or ineffective chiral components in drugs can threat human health, there is an urgent need for methods to separation and analyze chiral molecules. Molecular imprinting technology (MIT) is a biomimetic technique for specific recognition of analytes with high potential for application in the field of chiral separation and analysis. However, since MIT has some disadvantages when used for chiral recognition, such as poor rigidity of imprinted materials, a single type of recognition site, and poor stereoselectivity, reducing the interference of conformationally and structurally similar substances to increase the efficiency of chiral recognition is difficult. Therefore, improving the rigidity of imprinted materials, increasing the types of imprinted cavity recognition sites, and constructing an imprinted microenvironment for highly selective chiral recognition are necessary for the accurate identification of chiral substances. In this article, the principle of chiral imprinting recognition is introduced, and various strategies that improve the selectivity of chiral imprinting, using derivative functional monomers, supramolecular compounds, chiral assembly materials, and biomolecules, are reviewed in the past 10 years.


Subject(s)
Molecular Imprinting , Humans , Molecular Imprinting/methods , Polymers , Stereoisomerism
6.
Biosens Bioelectron ; 223: 115027, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36580815

ABSTRACT

In order to improve the recognition performance of MIPs sensors in chiral drug enantiomers, a novel a highly selective molecular recognition method based on protein-assisted immobilization of chiral molecular conformation was developed. S-fluoxetine (S-FLX) as the target chiral molecule, human serum albumin (HSA), which has a high affinity and strong interactions with S-FLX, was screened from 11 proteins to serve as an auxiliary recognition unit for the fixation of chiral conformation. By incorporating HSA into the preparation of molecularly imprinted polymers (MIPs), the natural chirality and high stereoselectivity of the protein were leveraged for the induction and fixation of the stereo conformation of S-FLX, refinement of internal structures of the imprinted cavities. The sensor exhibited excellent chiral recognition ability and high detection sensitivity. The changes of probe signal intensity of the MIPs/HSA sensor were positively correlated with the logarithmic concentration of S-FLX in the range of 1.0 × 10-16-1.0 × 10-11 mol L-1, where a detection limit of 6.43 × 10-17 mol L-1 was achieved (DL = 3δb/K). The selectivity of MIPs/HSA sensor in recognizing S-FLX was increased by 18.5 times and the sensitivity was increased by 2.6 times after the incorporation of HSA. The developed sensor was successfully used for the analysis of S-FLX in fluoxetine hydrochloride capsules.


Subject(s)
Biosensing Techniques , Molecular Imprinting , Humans , Fluoxetine/analysis , Fluoxetine/chemistry , Fluoxetine/metabolism , Molecular Imprinting/methods , Serum Albumin, Human , Proteins , Molecularly Imprinted Polymers
7.
Sci China Life Sci ; 66(7): 1518-1534, 2023 07.
Article in English | MEDLINE | ID: mdl-36586071

ABSTRACT

Intensive livestock and poultry farming in China largely relied on the use of in-feed antibiotics until July 2020. The consequences of antibiotic overuse in animal feed include accumulation in animal products and the development of bacterial antibiotic resistance, both of which threaten food safety and human health. China has now completely banned the circulation of commercial feed containing growth-promoting drug additives (except Chinese herbal medicine). Therefore, alternatives to in-feed antibiotics in animal production are greatly needed. Natural phenolic compounds (NPCs) exist widely in plants and are non-toxic, non-polluting, highly reproducible, and leave little residue. Many natural flavonoids, phenolic acids, lignans, and stilbenes have polyphenol chemical structures and exhibit great potential as alternatives to antibiotics. In this review we delineate the characteristics of plant-derived NPCs and summarize their current applications as alternatives to in-feed antibiotics, aiming to provide new strategies for antibiotic-free feeding and promote the development of more sustainable animal husbandry practices.


Subject(s)
Animal Feed , Anti-Bacterial Agents , Animals , Humans , Anti-Bacterial Agents/pharmacology , Animal Feed/analysis , Poultry , Animal Husbandry , Phenols/pharmacology
8.
Polymers (Basel) ; 14(19)2022 Oct 02.
Article in English | MEDLINE | ID: mdl-36236082

ABSTRACT

A new chiral molecularly imprinted polymer (MIP) sensor with dual recognition ability was developed for the highly selective separation of enantiomers with toxic side effects in drugs. The sensor contains double-stranded deoxyribonucleic acid (dsDNA) as the element that immobilizes the chiral molecular conformation: the dsDNA enables the imprinted cavities to match the three-dimensional structure and functional groups from the chiral molecule. By embedding the spatial orientation of dsDNA in MIPs, one can accurately capture and immobilize the molecular conformation, eliminating the influence of interfering analogues. Herein, L-penicillamine (L-Pen) was selected as the chiral template molecule and embedded into dsDNA to form dsDNA-L-Pen complex, which was then embedded into the MIPs by electropolymerization. After elution, the stereo-selective imprinted cavities were obtained. The ATATATATATAT-TATATATATATA base sequence showed a high affinity for the embedded L-Pen, which endowed the imprinted cavities with a larger number of sites and improved the selectivity toward Pen enantiomers. Under the optimal working conditions, the current response of the MIP/dsDNA sensor exhibited a positive linear relationship with the logarithm of the L-Pen concentration in the range of 3.0 × 10-16 to 3.0 × 10-13 mol/L, and the detection limit was 2.48 × 10-16 mol/L. After the introduction of dsDNA into the MIP, the selectivity of the sensor toward D-Pen increased by 6.4 times, and the sensor was successfully applied in the analysis of L-Pen in penicillamine tablets.

9.
PeerJ ; 10: e13168, 2022.
Article in English | MEDLINE | ID: mdl-35651745

ABSTRACT

Background: Pepper (Capsicum annuum L.) is a major cash crop throughout the world. Male sterility is an important characteristic in crop species that leads to a failure to produce functional pollen, and it has crucial roles in agricultural breeding and the utilization of heterosis. Objectives: In this study, we identified many crucial factors and important components in metabolic pathways in anther and pollen development, and elucidated the molecular mechanism related to pollen abortion in pepper. Methods: Pepper pollen was observed at different stages to detect the characteristics associated with male sterility and fertility. The phytohormone and oxidoreductase activities were detected in spectrophotometric and redox reaction assays, respectively. Proteins were extracted from male sterile and fertile pepper lines, and identified by TMT/iTRAQ (tandem mass tags/isobaric tags for relative and absolute quantitation) and LC-MS/MS (liquid chromatograph-mass spectrometer) analysis. Differentially abundant proteins (DAPs) were analyzed based on Gene Ontology annotations and the Kyoto Encyclopedia of Genes and Genomes database according to |fold change)| > 1.3 and P value < 0.05. DAPs were quantified in the meiosis, tetrad, and binucleate stages by parallel reaction monitoring (PRM). Results: In this study, we screened and identified one male sterile pepper line with abnormal cytological characteristics in terms of pollen development. The peroxidase and catalase enzyme activities were significantly reduced and increased, respectively, in the male sterile line compared with the male fertile line. Phytohormone analysis demonstrated that the gibberellin, jasmonic acid, and auxin contents changed by different extents in the male sterile pepper line. Proteome analysis screened 1,645 DAPs in six clusters, which were mainly associated with the chloroplast and cytoplasm based on their similar expression levels. According to proteome analysis, 45 DAPs were quantitatively identified in the meiosis, tetrad, and binucleate stages by PRM, which were related to monoterpenoid biosynthesis, and starch and sucrose metabolism pathways. Conclusions: We screened 1,645 DAPs by proteomic analysis and 45 DAPs were related to anther and pollen development in a male sterile pepper line. In addition, the activities of peroxidase and catalase as well as the abundances of phytohormones such as gibberellin, jasmonic acid, and auxin were related to male sterility. The results obtained in this study provide insights into the molecular mechanism responsible for male sterility and fertility in pepper.


Subject(s)
Capsicum , Plant Infertility , Capsicum/genetics , Catalase/genetics , Chromatography, Liquid , Gibberellins/analysis , Plant Growth Regulators , Proteome/genetics , Proteomics/methods , Tandem Mass Spectrometry
10.
Front Immunol ; 13: 847861, 2022.
Article in English | MEDLINE | ID: mdl-35185936

ABSTRACT

Gut barrier disruption is the initial pathogenesis of various diseases. We previously reported that dietary allicin improves tight junction proteins in the endoplasmic reticulum stressed jejunum. However, whether the allicin benefits the gut barrier within mycotoxin or endotoxin exposure is unknown. In the present study, IPEC-J2 cell monolayers within or without deoxynivalenol (DON) or lipopolysaccharide (LPS) challenges were employed to investigate the effects of allicin on intestinal barrier function and explore the potential mechanisms. Results clarified that allicin at 2 µg/mL increased the viability, whereas the allicin higher than 10 µg/mL lowered the viability of IPEC-J2 cells via inhibiting cell proliferation. Besides, allicin increased trans-epithelial electric resistance (TEER), decreased paracellular permeability, and enhanced ZO-1 integrity of the IPEC-J2 cell monolayers. Finally, allicin supplementation prevented the LPS-induced barrier damages via activating Nrf2/HO-1 pathway-dependent antioxidant system. In conclusion, the present study strongly confirmed allicin as an effective nutrient to improve intestinal barrier function and prevent bacterial endotoxin-induced barrier damages.


Subject(s)
Disulfides/pharmacology , Endoplasmic Reticulum Stress/drug effects , Jejunum/drug effects , Lipopolysaccharides/toxicity , Permeability/drug effects , Sulfinic Acids/pharmacology , Animals , Cell Line , Electric Impedance , Epithelial Cells/metabolism , Heme Oxygenase-1/metabolism , Jejunum/metabolism , Jejunum/physiology , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Swine , Tight Junction Proteins/metabolism
11.
J Virol Methods ; 301: 114408, 2022 03.
Article in English | MEDLINE | ID: mdl-34896455

ABSTRACT

Immunization is the most effective way to respond to an influenza epidemic. To produce Vero cell-derived influenza vaccines, a more efficient, stable and economical purification process is required. In this study, we purified the H7N9 influenza virus grown in Vero cells that were cultured in a serum-free medium by using a combination of anion exchange chromatography (AEC) and ligand-activated core chromatography (LCC), which avoids the virus capture step. After purification, 99.95 % host cell DNA (hcDNA) (final concentration: 28.69 pg/dose) and 98.87 % host cell protein (HCP) (final concentration: 28.28 ng/dose) were removed. The albumin content was 11.36 ng/dose. All these remnants met the current Chinese Pharmacopoeia and WHO requirements. The final virus recovery rate was 58.74 %, with the concentration of hemagglutinin recorded at 132.12 µg/mL. The flow-through chromatography purification process represents an alternative to the existing processes for cell-derived influenza viruses and might be suitable for the purification of other viruses as well.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza Vaccines , Influenza, Human , Animals , Chlorocebus aethiops , Chromatography/methods , Hemagglutinin Glycoproteins, Influenza Virus , Humans , Influenza A Virus, H7N9 Subtype/genetics , Influenza, Human/prevention & control , Vero Cells
12.
Dev Biol ; 477: 11-21, 2021 09.
Article in English | MEDLINE | ID: mdl-34004180

ABSTRACT

Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.


Subject(s)
Body Patterning , Cochlea/embryology , DNA-Binding Proteins/physiology , Animals , Cochlea/cytology , Cochlea/innervation , DNA-Binding Proteins/genetics , Gene Deletion , Hair Cells, Auditory/physiology , Mice , Mice, Knockout , Morphogenesis/genetics , Morphogenesis/physiology , Spiral Ganglion/cytology , Spiral Ganglion/embryology
13.
J Microbiol Biotechnol ; 31(7): 978-989, 2021 Jul 28.
Article in English | MEDLINE | ID: mdl-33782224

ABSTRACT

Allyl isothiocyanate (AITC), as a fumigant, plays an important role in soil control of nematodes, soilborne pathogens, and weeds, but its effects on soil microorganisms are unclear. In this study, the effects of AITC on microbial diversity and community composition of Capsicum annuum L. soil were investigated through Illumina high-throughput sequencing. The results showed that microbial diversity and community structure were significantly influenced by AITC. AITC reduced the diversity of soil bacteria, stimulated the diversity of the soil fungal community, and significantly changed the structure of fungal community. AITC decreased the relative abundance of dominant bacteria Planctomycetes, Acinetobacter, Pseudodeganella, and RB41, but increased that of Lysobacter, Sphingomonas, Pseudomonas, Luteimonas, Pseudoxanthomonas, and Bacillus at the genera level, while for fungi, Trichoderma, Neurospora, and Lasiodiplodia decreased significantly and Aspergillus, Cladosporium, Fusarium, Penicillium, and Saccharomyces were higher than the control. The correlation analysis suggested cellulase had a significant correlation with fungal operational taxonomic units and there was a significant correlation between cellulase and fungal diversity, while catalase, cellulose, sucrase, and urease were the major contributors in the shift of the community structure. Our results will provide useful information for the use of AITC in the assessment of environmental and ecological security.


Subject(s)
Capsicum/growth & development , Isothiocyanates/pharmacology , Microbiota/drug effects , Pesticides/pharmacology , Soil Microbiology , Bacteria/classification , Bacteria/drug effects , Bacteria/isolation & purification , Capsicum/microbiology , Capsicum/parasitology , Enzymes/analysis , Enzymes/metabolism , Fungi/classification , Fungi/drug effects , Fungi/isolation & purification , Isothiocyanates/analysis , Pesticides/analysis , Soil/chemistry
14.
Dalton Trans ; 49(42): 14847-14853, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33057529

ABSTRACT

The development of high-performance non-noble metal cathode catalysts is a cutting-edge approach for efficient energy conversion and storage devices. Here, we describe an in situ-formed template-assisted method to prepare a highly active yet stable electrocatalyst (FeSN-HPC) that possesses abundant Fe-N4 sites uniformly dispersed in S and N co-doped hierarchical porous carbon. Compared to commercial Pt/C in alkaline electrolyte, the sample FeSN-HPC displays superior and enhanced oxygen reduction reaction (ORR) activity (0.86 V of half-wave potential) and stability (only 14 mV degradation of half-wave potential after durability tests). The high electrocatalytic activity of FeSN-HPC mainly originates from the synergistic effect of efficient N dopants (such as pyridinic N, graphitic N, and FeII-N4) and the desirable hierarchical porous architecture. Expectedly, the primary Zn-air battery (ZAB) with FeSN-HPC as the cathode electrocatalyst exhibits an outstanding discharge performance, with a maximal power density of 200 mW cm-2. Additionally, the sample FeSN-HPC also has promising potential for application in solid and flexible ZABs.

15.
Bioengineered ; 11(1): 1258-1268, 2020 12.
Article in English | MEDLINE | ID: mdl-33124497

ABSTRACT

Because of the large population, large demand, limited arable land and many environmental factors, continuous cropping have become a very common phenomenon in China. However, long-term continuous cropping has caused a series of serious soil-borne diseases, and the yield and quality of crops to drop, which seriously restricted the sustainable development of agricultural industry. Therefore, in order to improve the yield of pepper and reduce the occurrence of soil-borne diseases, it is essential to understand the effect of continuous cropping of pepper on soil microbial community composition and abundance. In this study, high throughput sequencing was used to study the effects of seven treatments of organic fertilizers and corn straw on soil microbial community and function of pepper continuous cropping. The results showed that the yield of all treatments was significantly higher than that of the control. The soil microbial diversity and community composition showed that Proteobacteria and Ascomycota were the most abundant phylum in all treatments. In conclusion, there were significant differences among the seven treatments and the treatment of fowl dung with corn straw was the best fertilizer combination to improve the yield and output value of pepper. Besides, the addition of fowl dung and corn straw not only can improve the community and functions of microorganisms, but also enhance the ability of disease resistance, and ultimately decrease the soil-borne diseases. The results will help to provide scientific basis for rational application of organic fertilizer and corn straw, and overcoming continuous cropping obstacles.


Subject(s)
Capsicum/microbiology , Charcoal , Crops, Agricultural/microbiology , Fertilizers , Soil Microbiology , Zea mays
16.
J Med Virol ; 91(1): 14-21, 2019 01.
Article in English | MEDLINE | ID: mdl-30168587

ABSTRACT

BACKGROUND: At the same dosage, the new generation of Sabin-inactivated poliovirus vaccine (sIPV) is less immunogenic than the traditional oral polio vaccine (OPV) dosage in China. The useful adjuvant might be a necessary strategy to strengthen the immune protective effects. METHODS: In this study, we produced an adjuvant compound (named KML05) that could promote immunogenicity and fractional doses of sIPV with a long duration of protection in a rat model. The compound adjuvant had both advantages and a function of MF59 and carbopol971P. RESULTS: The effect seroconversion of experimental animals immunized with KML05 could be extended to one-eighth of the dose. According to the result of the geometric mean titers (GMTs), KML05 adjuvant could save eight times the amount of sIPV D-antigen usage, but aluminum hydroxide adjuvant could save twice at the same titers. Additionally, it was found that there was a significant difference in the GMT titer of poliovirus type 2 between animals immunized by KML05 and alum adjuvant (P < 0.05). At 12th-month postvaccination, the neutralization titers stimulated by IPV-KML05 were maintained over a longer time period in immunized animals. CONCLUSION: Our research team developed KML05 adjuvant, which combined carbopol971P with MF59, increased antibody responses to sIPV for a longer duration of protection in a rat model.


Subject(s)
Acrylates/administration & dosage , Adjuvants, Immunologic/administration & dosage , Antibodies, Viral/blood , Poliovirus Vaccine, Inactivated/administration & dosage , Poliovirus Vaccine, Inactivated/immunology , Polysorbates/administration & dosage , Squalene/administration & dosage , Animals , Female , Male , Rats, Wistar , Seroconversion , Time Factors , Treatment Outcome
17.
eNeuro ; 5(2)2018.
Article in English | MEDLINE | ID: mdl-29766040

ABSTRACT

Axon guidance in vertebrates is controlled by genetic cascades as well as by intrinsic activity-dependent refinement of connections. Midline axon crossing is one of the best studied pathfinding models and is fundamental to the establishment of bilaterally symmetric nervous systems. However, it is not known whether crossing requires intrinsic activity in axons, and what controls that activity. Further, a mechanism linking neuronal activity and gene expression has not been identified for axon pathfinding. Using embryonic zebrafish, we found that the NMDA receptor (NMDAR) NR1.1 subunit (grin1a) is expressed in commissural axons. Pharmacological inhibition of grin1a, hypoxia exposure reduction of grin1a expression, or CRISPR knock-down of grin1a leads to defects in midline crossing. Inhibition of neuronal activity phenocopies the effects of grin1a loss on midline crossing. By combining pharmacological inhibition of the NMDAR with optogenetic stimulation to precisely restore neuronal activity, we observed rescue of midline crossing. This suggests that the NMDAR controls pathfinding by an activity-dependent mechanism. We further show that the NMDAR may act, via modulating activity, on the transcription factor arxa (mammalian Arx), a known regulator of midline pathfinding. These findings uncover a novel role for the NMDAR in controlling activity to regulate commissural pathfinding and identify arxa as a key link between the genetic and activity-dependent regulation of midline axon guidance.


Subject(s)
Axons/physiology , Central Nervous System/embryology , Gene Expression Regulation, Developmental/physiology , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Animals, Genetically Modified , Embryo, Nonmammalian , Hypoxia/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Zebrafish , Zebrafish Proteins
18.
Mol Neurobiol ; 55(9): 7179-7186, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29383693

ABSTRACT

Protein phosphatase-1 (PP1) constrains learning and memory formation in part through its effects on the induction threshold of long-term potentiation (LTP) and depression (LTD). LTD induction requires both the enzymatic activity of PP1 and its proper anchoring to synaptic spines. We have shown previously that neurabin, a major synaptic scaffolding protein, targets PP1 to synapses for LTD induction. Here, we show that PP1 bound on spinophilin, a close homolog of neurabin and another major synaptic PP1 anchoring protein, does not play a role in LTD induction, which suggests that neurabin plays a privileged role in nanodomain targeting of PP1 in LTD induction. We found that protein kinase A can significantly weaken the neurabin-PP1 interaction in neurons via phosphorylation of neurabin at serine 461, a phosphorylation site adjacent to the PP1-binding motif that is not conserved in spinophilin. Finally, we found that a neurabin mutation (S461E), which mimics phosphorylation, blocked AMPA receptor endocytosis and LTD induction. The results indicate the critical importance of nanodomain targeting of PP1 within synaptic spines and its regulation in LTD induction.


Subject(s)
Long-Term Potentiation , Microfilament Proteins/metabolism , Nerve Tissue Proteins/metabolism , Protein Phosphatase 1/metabolism , Receptors, AMPA/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Endocytosis , Enzyme Activation , HEK293 Cells , Humans , Mutant Proteins/metabolism , Neurons/metabolism , Phosphorylation , Phosphoserine/metabolism , Rats
19.
Expert Rev Vaccines ; 16(8): 855-863, 2017 08.
Article in English | MEDLINE | ID: mdl-28581345

ABSTRACT

BACKGROUND: It was to generate a new Vero and cold-adapted live attenuated influenza B vaccine with enough safety and immunogenicity. METHODS: According to modified classical reassortment method, the donor strain was B/Yunnan/2/2005Vca(B), and the parental virus strain was B/Brisbane/60/2008wt. After co-infection in Vero cells, the prepared antibody serum inhibited the donor strain growth, and screening conditions inhibited the parental virus growth, which induced the growth of the new reassortant virus B/Brisbane/60/2008Vca(B) grow. Through intraperitoneal injection (i.j.) and intranasal injection (n.j.) we evaluated the safety and immunogenicity of the vaccine. RESULTS: A high-yield of the reassortant virus was produced in Vero cells at 25°C, similar to the donor strains. After sequencing, it was found that B/Brisbane/60/2008Vca(B) Hemagglutinin (HA) and Neuraminidase (NA) gene fragments were from B/Brisbane/60/2008wt, while the other 6 gene fragments were from B/Yunnan/2/2005Vca(B). The n.j. immune pathway experiments showed no significant differences between the treatment and the PBS control group with respect to weight changes (P > 0.5). Furthermore, the new strain had a sufficient geometric mean titter (GMT) against B/Brisbane/60/2008wt. CONCLUSION: The new reassortant live attenuated influenza B vaccine was safe and having enough immune stimulating ability.


Subject(s)
Influenza B virus/immunology , Influenza Vaccines/immunology , Influenza Vaccines/isolation & purification , Reassortant Viruses/immunology , Technology, Pharmaceutical , Adaptation, Biological , Administration, Intranasal , Animals , Antibodies, Viral/blood , Chlorocebus aethiops , Cold Temperature , Guinea Pigs , Influenza B virus/genetics , Influenza B virus/growth & development , Influenza Vaccines/adverse effects , Injections, Intraperitoneal , Reassortant Viruses/genetics , Reassortant Viruses/growth & development , Vaccines, Attenuated/adverse effects , Vaccines, Attenuated/immunology , Vaccines, Attenuated/isolation & purification , Vero Cells
20.
Cell Physiol Biochem ; 40(5): 921-932, 2016.
Article in English | MEDLINE | ID: mdl-27941323

ABSTRACT

BACKGROUND: There are sporadic cases and local outbreaks of H5N1 avian influenza virus worldwide every year. The World Health Organization (WHO) has paid close attention to the avian influenza epidemic trend. Avian influenza vaccines (AIV) are considered to be useful when an epidemic occurs. However, the use of AIV for humans is not yet widespread. METHODS: This study assessed the immunogenicity and safety of pandemic influenza H5N1 vaccines with inactivated whole virus, split virus and subunit virus vaccines for healthy adults. We searched the databases of the Cochrane Central Register of Controlled Trials (CENTRAL), Medline, Excerpata Medica Database (EMBASE) and China National Knowledge Infrastructure (CNKI). The data from randomized trials regarding the immunogenicity and safety of AIV with or without different types of adjuvants for healthy adults (with an age range from 18 to 60 years) were collected. RESULTS: According to this study, the most effective doses of H5N1 AIV ranged from 3.75 µg to 7.5 µg Hemagglutinin (HA) antigen. Aluminium adjuvants were administered with the same vaccine dose as a no-adjuvant group and induced the same immune effects. However, novel adjuvants (MF59 and AS03) were used with a smaller dose of vaccine than the no-adjuvant groups and successfully stimulated the body to produce more effective antibodies. CONCLUSION: All of the H5N1 AIV surveyed in this study were well tolerated without serious adverse reactions.


Subject(s)
Health , Influenza A Virus, H5N1 Subtype/immunology , Influenza Vaccines/adverse effects , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/virology , Pandemics , Adjuvants, Immunologic , Adult , Clinical Trials as Topic , Humans , Vaccines, Subunit/immunology , Virion/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...