Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 62(35): 14261-14278, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37604675

ABSTRACT

Aromatic hydroxylation of benzoic acids (BzOH) to salicylates and phenolates is fundamentally interesting in industrial chemistry. However, key mechanistic uncertainties and dichotomies remain after decades of effort. Herein, the elusive mechanism of the competitive ortho-/ipso-hydroxylation of BzOH by H2O2 mediated by a nonheme iron(II) catalyst was comprehensively investigated using density functional theory calculations. Results revealed that the long-postulated FeV(O)(anti-BzO) oxidant is an FeIV(O)(anti-BzO•) species 2 (anti- and syn- are defined by the orientation of the carboxyl oxygen of BzO to the oxo), which rules out the noted two-oxidant mechanism proposed previously. We propose a new mechanism in which, following the formation of an FeV(O)(syn-BzO) species (3) and its electromer FeIV(O)(syn-BzO•) (3'), 3/3' either converts to salicylate and phenolate via intramolecular self-hydroxylation (route A) or acts as an oxidant to oxygenate another BzOH to generate the same products (route B). In route A, the rotation of the BzO group along the C-O bond forms 2, in which the BzO group is orientated by π-π stacking interactions. An electrophilic ipso-addition forms a phenolate by concomitant decarboxylation or an ortho-attack forms a cationic complex, which readily undergoes an NIH shift and a BzOH-assisted proton shift to form a salicylate. In route B, 3 oxidizes an additional BzOH molecule directed by hydrogen bonding and π-π stacking interactions. In both routes, selectivity is determined by the chemical property of the BzO ring. These mechanistic findings provide a clear mechanistic scenario and enrich the knowledge of hydroxylation of aromatic acids.

2.
J Biochem Mol Toxicol ; 37(11): e23461, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37477137

ABSTRACT

Goniothalamin (GTN) is a natural compound isolated from Goniothalamus species. It is a potent anti-inflammatory agent. However, there is a paucity of scientific data about its toxicity. This study investigated GTN's anti-inflammatory mechanism and lipopolysaccharide (LPS)-induced lung injury in mice. Mice were distributed into four groups and injected with GTN intraperitoneally (Dosage-50 and 100 mg/kg). We analyzed the wet/dry weight ratio, infiltrated inflammatory cell count, myeloperoxidase (MPO) activity, and histopathological changes in the lung tissues of the mice. Results revealed GTN alleviated LPS-induced inflammation in mice. Western Blot and enzyme-linked immunosorbent assay techniques were used to investigate the effect of GTN on pro-inflammatory cytokines and proteins involved in the MAPK and nuclear factor-B (NF-κB) signaling pathways. Cytokines (macrophage migration inhibitory factor, interleukin [IL]-13, IL-6, TNF-α, and IL-1ß) were inhibited by GTN. However, IL-10 was upregulated. Western blot analysis indicated that GTN suppressed the phosphorylation of jun N-terminal kinase, nuclear factor NF-kappa-B p65, I-kappa-B, extracellular signal-regulated kinases, NF-κB, and p38. GTN also suppressed the expression of TLR-4 protein, thereby, inhibiting MAPK and NF-κB signaling pathways. Thus, GTN can effectively prevent and cure acute lung injury.


Subject(s)
Acute Lung Injury , NF-kappa B , Mice , Animals , NF-kappa B/metabolism , Lipopolysaccharides/pharmacology , Toll-Like Receptor 4 , Signal Transduction , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Inflammation , Cytokines/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Extracellular Signal-Regulated MAP Kinases/metabolism
3.
Chem Commun (Camb) ; 57(25): 3115-3118, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33630000

ABSTRACT

DFT calculations reveal that the iodine of cobalt(ii)-iodylarene complexes acts as a directing group via halogen bonding interaction to substrates. A transient 3c-4e bond is formed during oxidation reactions to decrease the activation energy by electron delocalization. Dehydrogenation of dihydroantharacene proceeds via a novel concerted hydride transfer/proton transfer mechanism.

4.
Front Chem ; 8: 744, 2020.
Article in English | MEDLINE | ID: mdl-32974286

ABSTRACT

Metal-iodosylarene complexes have been recently viewed as a second oxidant alongside of the well-known high-valent metal-oxo species. Extensive efforts have been exerted to unveil the structure-function relationship of various metal-iodosylarene complexes. In the present manuscript, density functional theoretical calculations were employed to investigate such relationship of a specific manganese-iodosylbenzene complex [MnIII(TBDAP)(PhIO)(OH)]2+ (1). Our results fit the experimental observations and revealed new mechanistic findings. 1 acts as a stepwise 1e+1e oxidant in sulfoxidation reactions. Surprisingly, C-H bond activation of 9,10-dihydroanthracene (DHA) by 1 proceeds via a novel ionic hydride transfer/proton transfer (HT/PT) mechanism. As a comparison to 1, the electrophilicity of an iodosylbenzene monomer PhIO was investigated. PhIO performs concerted 2e-oxidations both in sulfoxidation and C-H activation. Hydroxylation of DHA by PhIO was found to proceed via a novel ionic and concerted proton-transfer/hydroxyl-rebound mechanism involving 2e-oxidation to form a transient carbonium species.

SELECTION OF CITATIONS
SEARCH DETAIL
...