Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 243(3): 1017-1033, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877710

ABSTRACT

Tree peony (Paeonia suffruticosa) undergoes bud endodormancy, and gibberellin (GA) pathway plays a crucial role in dormancy regulation. Recently, a key DELLA protein PsRGL1 has been identified as a negative regulator of bud dormancy release. However, the mechanism of GA signal to break bud dormancy remains unknown. In this study, yeast two-hybrid screened PsSOC1 interacting with PsRGL1 through its MADS domain, and interaction was identified using pull-down and luciferase complementation imaging assays Transformation in tree peony and hybrid poplar confirmed that PsSOC1 facilitated bud dormancy release. Transcriptome analysis of PsSOC1-overexpressed buds indicated PsCYCD3.3 and PsEBB3 were its potential downstream targets combining with promoter survey, and they also accelerated bud dormancy release verified by genetic analysis. Yeast one-hybrid, electrophoretic mobility shifts assays, chromatin immunoprecipitation quantitative PCR, and dual luciferase assays confirmed that PsSOC1 could directly bind to the CArG motif of PsCYCD3.3 and PsEBB3 promoters via its MADS domain. PsRGL1-PsSOC1 interaction inhibited the DNA-binding activity of PsSOC1. Additionally, PsCYCD3.3 promoted bud dormancy release by rebooting cell proliferation. These findings elucidated a novel GA pathway, GA-PsRGL1-PsSOC1-PsCYCDs, which expanded our understanding of the GA pathway in bud dormancy release.


Subject(s)
Cell Proliferation , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Promoter Regions, Genetic , Plant Proteins/metabolism , Plant Proteins/genetics , Gibberellins/metabolism , Promoter Regions, Genetic/genetics , Plant Dormancy/genetics , Signal Transduction , Protein Binding
2.
PeerJ ; 12: e17029, 2024.
Article in English | MEDLINE | ID: mdl-38436031

ABSTRACT

Anthropogenic global change is precipitating a worldwide biodiversity crisis, with myriad species teetering on the brink of extinction. The Arctic, a fragile ecosystem already on the frontline of global change, bears witness to rapid ecological transformations catalyzed by escalating temperatures. In this context, we explore the ramifications of global change and interspecies competition on two arctic crane species: the critically endangered Siberian crane (Leucogeranus leucogeranus) and the non-threatened sandhill crane (Grus canadensis). How might global climate and landcover changes affect the range dynamics of Siberian cranes and sandhill cranes in the Arctic, potentially leading to increased competition and posing a greater threat to the critically endangered Siberian cranes? To answer these questions, we integrated ensemble species distribution models (SDMs) to predict breeding distributions, considering both abiotic and biotic factors. Our results reveal a profound divergence in how global change impacts these crane species. Siberian cranes are poised to lose a significant portion of their habitats, while sandhill cranes are projected to experience substantial range expansion. Furthermore, we identify a growing overlap in breeding areas, intensifying interspecies competition, which may imperil the Siberian crane. Notably, we found the Anzhu Islands may become a Siberian crane refuge under global change, but competition with Sandhill Cranes underscores the need for enhanced conservation management. Our study underscores the urgency of considering species responses to global changes and interspecies dynamics in risk assessments and conservation management. As anthropogenic pressures continue to mount, such considerations are crucial for the preservation of endangered species in the face of impending global challenges.


Subject(s)
Anthropogenic Effects , Ecosystem , Animals , Biodiversity , Birds , Climate
3.
Hortic Res ; 10(5): uhad044, 2023 May.
Article in English | MEDLINE | ID: mdl-37786434

ABSTRACT

Tree peony bud endodormancy is a common survival strategy similar to many perennial woody plants in winter, and the activation of the GA signaling pathway is the key to breaking endodormancy. GA signal transduction is involved in many physiological processes. Although the GA-GID1-DELLA regulatory module is conserved in many plants, it has a set of specific components that add complexity to the GA response mechanism. DELLA proteins are key switches in GA signaling. Therefore, there is an urgent need to identify the key DELLA proteins involved in tree peony bud dormancy release. In this study, the prolonged chilling increased the content of endogenously active gibberellins. PsRGL1 among three DELLA proteins was significantly downregulated during chilling- and exogenous GA3-induced bud dormancy release by cell-free degradation assay, and a high level of polyubiquitination was detected. Silencing PsRGL1 accelerated bud dormancy release by increasing the expression of the genes associated with dormancy release, including PsCYCD, PsEBB1, PsEBB3, PsBG6, and PsBG9. Three F-box protein family members responded to chilling and GA3 treatments, resulting in PsF-box1 induction. Yeast two-hybrid and BiFC assays indicated that only PsF-box1 could bind to PsRGL1, and the binding site was in the C-terminal domain. PsF-box1 overexpression promoted dormancy release and upregulated the expression of the dormancy-related genes. In addition, yeast two-hybrid and pull-down assays showed that PsF-box1 also interacted with PsSKP1 to form an E3 ubiquitin ligase. These findings enriched the molecular mechanism of the GA signaling pathway during dormancy release, and enhanced the understanding of tree peony bud endodormancy.

4.
Hortic Res ; 10(4): uhad033, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37090095

ABSTRACT

MicroRNAs (miRNAs) are non-coding RNAs that interact with target genes and are involved in many physiological processes in plants. miR172-AP2 mainly plays a role in the regulation of flowering time and floral organ differentiation. Bud dormancy release is necessary for forcing culture of tree peony in winter, but the mechanism of dormancy regulation is unclear. In this study, we found that a miR172 family member, PsmiR172b, was downregulated during chilling-induced bud dormancy release in tree peony, exhibiting a trend opposite to that of PsTOE3. RNA ligase-mediated (RLM) 5'-RACE (rapid amplification of cDNA ends) confirmed that miR172b targeted PsTOE3, and the cleavage site was between bases 12 (T) and 13 (C) within the complementary site to miR172b. The functions of miR172b and PsTOE3 were detected by virus-induced gene silencing (VIGS) and their overexpression in tree peony buds. PsmiR172b negatively regulated bud dormancy release, but PsTOE3 promoted bud dormancy release, and the genes associated with bud dormancy release, including PsEBB1, PsEBB3, PsCYCD, and PsBG6, were upregulated. Further analysis indicated that PsTOE3 directly regulated PsEBB1 by binding to its promoter, and the specific binding site was a C-repeat (ACCGAC). Ectopic expression in Arabidopsis revealed that the PsmiR172b-PsTOE3 module displayed conservative function in regulating flowering. In conclusion, our results provided a novel insight into the functions of PsmiR172-PsTOE3 and possible molecular mechanism underlying bud dormancy release in tree peony.

5.
PeerJ ; 7: e7545, 2019.
Article in English | MEDLINE | ID: mdl-31531270

ABSTRACT

AIM: Historically, the distribution of Sandhill Cranes included much of North America and extending in summer into northeast Russia. In recent years, observations of sandhill cranes in Asia during the non-breeding period have been frequently reported. However, the distribution and abundance of sandhill cranes during the non-breeding period in Asia have rarely been summarized and studied. Our study aimed to analyze the status of sandhill cranes that have spread south into East Asia during the non-breeding period and to assess the possible impacts of their potential spread. METHODS: Based on opportunistic data collected in the field and occurrence data collected online over the past half century, we used Geographic Information System to visualize the spatial distribution changes and regression analysis to analyze and visualize the changes in the amount of individuals over time. RESULTS: In the last 50 years, the distribution of sandhill cranes during the non-breeding season in Asia spanned 31 degrees in longitude to the west and 15 degrees in latitude to the south. Their distribution in Asia has expanded to 17 provinces and municipalities in China, Japan and South Korea. The amount of cranes in the non-breeding period in Asia increased significantly from 1963 to 2017. According to the historical records in East Asia, sandhill cranes were mixed with five other species of crane groups. MAIN CONCLUSIONS: These results indicate that the range and amount of sandhill cranes have expanded. Sandhill cranes were mixed with five other crane species, which indicate their adaptability to a range of habitat types and food resources. The implications of these trends in sandhill cranes in East Asia for this and other crane species warrants further research.

SELECTION OF CITATIONS
SEARCH DETAIL
...