Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phytomedicine ; 132: 155806, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38876009

ABSTRACT

BACKGROUND: The plant Smilax china L., also known as Jingangteng, is suspected of regulating glucose and lipid metabolism. Jingangteng capsules (JGTCs) are commonly used to treat gynecological inflammation in clinical practice. However, it is not clear whether JGTCs can regulate glucose and lipid metabolism, and the mechanism is unclear. PURPOSE: To investigate the impact and mechanism of action of JGTCs on diabetes and liver lipid disorders in rats. METHODS: The chemical constituents of JGTCs were examined using ultra-high-performance liquid chromatography with quadrupole time-of-flight mass spectrometry. A high-fat diet and streptozotocin-induced diabetes model was used to evaluate anti-diabetic effects by assessing blood glucose and lipid levels and liver function. The mechanism was explored using fecal 16S rRNA gene sequencing and metabolomics profiling, reverse transcription-quantiative polymerase chain reaction (RT-qPCR), and Western blot analysis. RESULTS: Thirty-three components were identified in JGTCs. The serological and histomorphological assays revealed that JGTC treatment reduced levels of blood glucose and lipids, aspartate aminotransferase, alanine aminotransferase, and lipid accumulation in the liver of diabetic rats. According to 16S rDNA sequencing, JGTCs improved species richness and diversity in diabetic rats' intestinal flora and restored 22 dysregulated bacteria to control levels. Fecal metabolomics analysis showed that the altered fecal metabolites were rich in metabolites, such as histidine, taurine, low taurine, tryptophan, glycerophospholipid, and arginine. Serum metabolomics analysis indicated that serum metabolites were enriched in the metabolism of glycerophospholipids, fructose and mannose, galactose, linoleic acid, sphingolipids, histidine, valine, leucine and isoleucine biosynthesis, and tryptophan metabolism. Heatmaps revealed a strong correlation between metabolic parameters and gut microbial phylotypes. Molecular biology assays showed that JGTC treatment reversed the decreased expression of farnesoid X receptor (FXR) in the liver of diabetic rats and inhibited the expression of lipogenic genes (Srebp1c and FAS) as well as inflammation-related genes (interleukin (IL)-ß, tumor necrosis factor (TNF)-α, and IL-6). Liver metabolomics analysis indicated that JGTC could significantly regulate a significant number of bile acid metabolites associated with FXR, such as glyco-beta-muricholic acid, glycocholic acid, tauro-beta-muricholic acid, and tauro-gamma-muricholic acid. CONCLUSIONS: This was the first study to investigate the mechanisms of JGTCs' effects on liver lipid disorders in diabetic rats. JGTCs inhibited liver lipid accumulation and inflammatory responses in diabetic rats by affecting intestinal flora and metabolic disorders and regulating FXR-fat synthesis-related pathways to alleviate diabetic lipid disorders.

2.
Int Immunopharmacol ; 131: 111785, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38479158

ABSTRACT

Diabetic nephropathy (DN) is a significant clinical microvascular complication associated with diabetes mellitus (DM), and end-stage diabetes giving rise to kidney failure is developing into the major etiological factor of chronic kidney failure. Dapagliflozin is reported to limit podocyte damage in DM, which has proven to protect against renal failure. Mounting evidence has demonstrated that pyroptosis is associated with DM progression. Nevertheless, whether pyroptosis causes DN and the underlying molecular pathways remain obscure. In this study, we aimed to explore the antipyroptotic attributes of dapagliflozin and elucidate the underlying mechanisms of kidney damage in diabetes. In vivo, experiments were conducted in streptozotocin (STZ)-induced type 2 diabetic mice, which were administered dapagliflozin via gavage for 6 weeks. Subsequently, the specific organizational characteristics and expression of pyroptosis-related genes were evaluated. Intragastric dapagliflozin administration markedly reduced renal tissue injury. Meanwhile, dapagliflozin also attenuated the expression level of pyroptosis associated genes, including ASC, cleaved Caspase-1, GSDMD N-termini, NLRP3, IL-18, and IL-1ß in renal tissue of dapagliflozin-treated animals. Similar antipyroptotic effects were observed in palmitic acid (PA)-treated mouse podocytes. We also found that heme oxygenase 1 (HO-1) enhanced the protection of mouse podocyte clone 5 cells (MPC5). Moreover, miR-155-5p inhibition increased pyroptosis in PA-treated MPC5 cells, suggesting that miR-155-5p acts as an endogenous stimulator that increases HO-1 expression and reduces pyroptosis. Hence, our findings imply that dapagliflozin inhibits podocyte pyroptosis via the miR-155-5p/HO-1/NLRP3 axis in DM. Furthermore, dapagliflozin substitution may be regarded as an effective strategy for preventing pyroptosis in the kidney, including a therapeutic option for treating pyroptosis-related DN.


Subject(s)
Benzhydryl Compounds , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Glucosides , MicroRNAs , Podocytes , Renal Insufficiency , Animals , Mice , Heme Oxygenase-1/genetics , Diabetes Mellitus, Experimental/drug therapy , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Pyroptosis , Kidney , Diabetic Nephropathies/drug therapy , MicroRNAs/genetics
3.
Br J Pharmacol ; 172(2): 630-41, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24866991

ABSTRACT

BACKGROUND AND PURPOSE: Opioid antagonists, such as naloxone and naltrexone, exhibit agonistic properties at the mutated µ receptor, MOR-S196ACSTA. In our previous study, systemic naloxone (10 mg·kg(-1) , s.c.) elicited antinociceptive effect without the induction of tolerance, dependence or rewarding effect in mice 2 weeks after intrathecal administration of double-stranded adeno-associated virus-MOR-S196ACSTA-eGFP. Here, we have investigated if this antinociceptive paradigm would be effective in a mouse model of neuropathic pain. EXPERIMENTAL APPROACH: Spinal nerves were ligated in male C57BL/6 mice 3 or 4 weeks after intrathecal injection of the lentivirus encoding the construct of MOR-S196ACSTA-eGFP (LV-MOR-S196ACSTA). Anti-allodynic effects of daily s.c.injections of saline, naltrexone (10 mg·kg(-1) ) or morphine (10 mg·kg(-1) ) were assessed by the von Frey test. After 14 days of treatment with saline, naltrexone or morphine, signs of natural withdrawal were measured at 22 and 46 h after the last injection. To determine the rewarding effects induced by morphine or naltrexone, the conditioned place preference test was carried out. KEY RESULTS: Anti-allodynic effects, as measured by von Frey test, increased after naltrexone or morphine treatment in mice transfected with LV-MOR-S196ACSTA in the spinal cord. Cessation of treatment with morphine, but not naltrexone, induced natural withdrawal and rewarding effects. CONCLUSIONS AND IMPLICATIONS: Systemic injection of naltrexone after the expression of a mutant µ opioid receptor, MOR-S196ACSTA, in the spinal cord may have therapeutic potential for chronic neuropathic pain, without the development of dependence or addiction. LINKED ARTICLES: This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2.


Subject(s)
Analgesics/therapeutic use , Naltrexone/therapeutic use , Narcotic Antagonists/therapeutic use , Neuralgia/drug therapy , Receptors, Opioid, mu/genetics , Analgesics/pharmacology , Animals , Conditioning, Psychological , Genetic Vectors , HEK293 Cells , Humans , Lentivirus/genetics , Male , Mice, Inbred C57BL , Morphine/pharmacology , Morphine/therapeutic use , Mutation , Naltrexone/pharmacology , Narcotic Antagonists/pharmacology , Neuralgia/metabolism , Receptors, Opioid, mu/metabolism , Reward , Spinal Cord/drug effects , Spinal Cord/metabolism , Spinal Nerves , Substance Withdrawal Syndrome , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...