Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 862: 160758, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36509270

ABSTRACT

Microplastic fibers (MPFs) released from synthetic textiles have been found to be a major source of microplastic in the environment. There is increasing evidence available that MPFs released during washing were likely formed during the manufacturing stage. However, real-life use of textiles is often associated with textile-on-textile abrasion, and the first evidence is available that MPFs and finer microplastic fiber fragments (fibrils) are formed during abrasion. In this study, we characterized the formation of MPFs and fibrils from a representative set of 12 polyester textiles after abrasion tests conducted with a Martindale tester. We also investigated the influence of rub intensity and the extractability of MPFs and fibrils from the abraded fabrics. For all textiles, the MPFs extracted after abrasion showed the same diameter as the fibers in non-abraded textiles (10-20 µm), while the extracted fibrils were much thinner (3-5 µm). The variability in the structure of the different polyester textiles led to a broad range of MPF and fibrils extracted during the first wash after 5000 rubs. One gram of textile released between 4900 and 640,000 MPFs and between 0 and 350,000 fibrils with an average fibril/MPF ratio of 0.8. The total number of MPFs and fibrils formed during abrasion was positively correlated with the increase in the number of rubs up to 10,000 times. Visible pilling on the textile surface was an important indicator for the formation of MPFs and fibrils. Our study revealed that textile abrasion is a critical, realistic, and overlooked mechanism for the formation of MPFs and fibrils, as abraded textiles (after 5000 times rubs) can release more than ten times the number of MPFs and fibrils compared to washing only.


Subject(s)
Plastics , Polyesters , Polyesters/chemistry , Microplastics , Textiles
2.
World J Gastrointest Oncol ; 14(12): 2340-2352, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36568944

ABSTRACT

BACKGROUND: Esophageal squamous cell carcinoma (ESCC), the predominant type of esophageal cancer, has a 5-year survival rate less than 20%. Although the cause of poor prognosis is the high incidence and mortality of ESCC, the high rate of metastasis after esophageal cancer surgery is the main cause of death after the surgery. Bromodomain-containing protein 4 (BRD4), an epigenetic reader of chromatin-acetylated histones in tumorigenesis and development, plays an essential role in regulating oncogene expression. BRD4 inhibition and BRD4 inhibition-based treatment can potentially suppress ESCC growth. However, the effects and mechanisms of action of BRD4 on ESCC cell migration remain unclear. AIM: To explore the effect of BRD4 on cell migration of ESCC in vitro and its possible molecular mechanism. METHODS: Human ESCC cell lines KYSE-450 and KYSE-150 were used. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assay was performed to examine cell proliferation, and the transwell migration assay was conducted to test ESCC cell migration. JQ1, a BRD4 inhibitor, was applied to cells, and BRD4 siRNA was transfected into ESCC cells to knockdown endogenous BRD4. GFP-RFP-LC3 adenovirus was infected into ESCC cells to evaluate the effect of JQ1 on autophagy. Western blotting was performed to determine the protein levels of BRD4, E-cadherin, vimentin, AMP-activated protein kinase (AMPK), and p-AMPK. RESULTS: BRD4 was either downregulated by small interfering RNA or pretreated with JQ1 in ESCC cells, leading to increased tumor migration in ESCC cells in a dose- and time-dependent manner. Inhibition of BRD4 not only significantly suppressed cell proliferation but also strongly increased cell migration by inducing epithelial-mesenchymal transition (EMT). The protein expression of vimentin was increased and E-cadherin decreased in a dose-dependent manner, subsequently promoting autophagy in KYSE-450 and KYSE-150 cells. Pretreatment with JQ1, a BRD4 inhibitor, inhibited BRD4-induced LC3-II activation and upregulated AMPK phosphorylation in a dose-dependent manner. Additionally, an increased number of autophagosomes and autolysosomes were observed in JQ1-treated ESCC cells. The autophagy inhibitor 3-methyladenine (3-MA) reversed the effects of BRD4 knockdown on ESCC cell migration and blocked JQ1-induced cell migration. 3-MA also downregulated the expression of vimentin and upregulation E-cadherin. CONCLUSION: BRD4 inhibition enhances cell migration by inducing EMT and autophagy in ESCC cells via the AMPK-modified pathway. Thus, the facilitating role on ESCC cell migration should be considered for BRD4 inhibitor clinical application to ESCC patients.

3.
Front Endocrinol (Lausanne) ; 13: 945310, 2022.
Article in English | MEDLINE | ID: mdl-35992137

ABSTRACT

Osteoporosis is a systemic metabolic disease, mainly characterized by reduced bone mineral density and destruction of bone tissue microstructure. However, the molecular mechanisms of osteoporosis need further investigation and exploration. Increasing studies have reported that circular RNAs (circRNAs), a novel type of RNA molecule, play crucial roles in various physiological and pathological processes and bone-related diseases. Based on an in-depth understanding of their roles in bone development, we summarized the multiple regulatory roles and underlying mechanisms of circRNA-miRNA-mRNA networks in the treatment of osteoporosis, associated with bone marrow mesenchymal stem cells (BMSCs), osteoblasts, and osteoclasts. Deeper insights into the vital roles of circRNA-miRNA-mRNA networks can provide new directions and insights for developing novel diagnostic biomarkers and therapeutic targets in the treatment of osteoporosis.


Subject(s)
MicroRNAs , Osteoporosis , Gene Regulatory Networks , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Osteoporosis/genetics , Osteoporosis/therapy , RNA, Circular , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
Public Health Rev ; 43: 1604501, 2022.
Article in English | MEDLINE | ID: mdl-35359614

ABSTRACT

Objectives: To synthesize existing evidence on prevalence as well as clinical and socio-economic aspects of Long COVID. Methods: An umbrella review of reviews and a targeted evidence synthesis of their primary studies, including searches in four electronic databases, reference lists of included reviews, as well as related article lists of relevant publications. Results: Synthesis included 23 reviews and 102 primary studies. Prevalence estimates ranged from 7.5% to 41% in non-hospitalized adults, 2.3%-53% in mixed adult samples, 37.6% in hospitalized adults, and 2%-3.5% in primarily non-hospitalized children. Preliminary evidence suggests that female sex, age, comorbidities, the severity of acute disease, and obesity are associated with Long COVID. Almost 50% of primary studies reported some degree of Long COVID-related social and family-life impairment, long absence periods off work, adjusted workloads, and loss of employment. Conclusion: Long COVID will likely have a substantial public health impact. Current evidence is still heterogeneous and incomplete. To fully understand Long COVID, well-designed prospective studies with representative samples will be essential.

5.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(6): 745-753, 2022 Nov.
Article in Chinese | MEDLINE | ID: mdl-37308429

ABSTRACT

Objective: To investigate the effects of ACC1 knockdown on human glioma U251 cell migration and its molecular mechanisms. Methods: Human glioma U251 cell line was used. The experiment was carried out in three steps. Experiment 1: knockdown of ACC1 in U251 cells (shACC1) and its control (NC) U251 cells were established by transfection of shACC1 lentivirus and negative control virus. The cell migration was detected by Transwell migration assay and scratch test. Western blot (WB) was performed to detect the levels of ACC1, Vimentin, Fibronectin, N-cadherin, E-cadherin and Slug proteins. Experiment 2: RT-qPCR and WB were performed to verify the RNA-seq result, upregulation effect of ACC1 knockdown on PAI-1 in U251 cells. The cells then were treated with PAI-1 inhibitor PAI-039, and the cell migration was detected by Transwell migration assay and scratch assay. The protein levels of ACC1, PAI-1, Vimentin, Fibronectin, N-cadherin, E-cadherin and Slug were examined by WB. Experiment 3: the molecular mechanisms of knocking down ACC1 to increase PAI-1 were explored. The cells were treated with acetyltransferase inhibitor C646, and cell migration was examined by Transwell migration assay and scratch assay. WB was conducted to test the levels of ACC1, H3K9ac, PAI-1, Vimentin, Fibronectin, N-cadherin, E-cadherin and Slug proteins. Each experiment was repeated three times. Results: Experiment 1: lentivirus transfection was performed on glioma U251 cells. Compared with NC group, the expression level of ACC1 in shACC1 group was decreased significantly, indicating that lentivirus transfection was successful (P<0.01), and the number of migrated cells in shACC1 group was increased significantly (P<0.01). Migration-related proteins Vimentin, Fibronectin, N-cadherin and Slug were up-regulated, while E-cadherin was down-regulated (P<0.01). Experiment 2: Compared with NC group, PAI-1 mRNA level in shACC1 group was up-regulated. Compared with control group, cell migration in shACC1+PAI-039 group was decreased (P<0.01), and migration-related proteins Vimentin, Fibronectin, N-cadherin, and Slug were up-regulated. E-cadherin expression was down-regulated (P<0.01). Experiment 3: Compared with NC group, the concentration of acetyl-coA and the expression level of H3K9ac in shACC1 group were increased significantly (P<0.01); After further treatment with histone acetyl transferase inhibitor C646, PAI-1 mRNA level was decreased, cell migration number and H3K9ac expression level were decreased in shACC1+C646 group compared with control group (P<0.01). Migration-related proteins Vimentin, Fibronectin, N-cadherin and Slug were up-regulated, while E-cadherin was down-regulated (P<0.01). Conclusion: Knockdown of ACC1 promotes the migration of human glioma U251 cells by increasing histone acetylation which elevates the level of PAI-1.


Subject(s)
Fibronectins , Glioma , Humans , Vimentin , Histones , Plasminogen Activator Inhibitor 1 , Cadherins , Cell Movement
6.
J Cell Mol Med ; 25(11): 4962-4973, 2021 06.
Article in English | MEDLINE | ID: mdl-33960631

ABSTRACT

Osteosarcoma (OS) is the most common primary malignant bone tumour in adolescence. Lately, light-emitting diodes (LED)-based therapy has emerged as a new promising approach for several diseases. However, it remains unknown in human OS. Here, we found that the blue LED irradiation significantly suppressed the proliferation, migration and invasion of human OS cells, while we observed blue LED irradiation increased ROS production through increased NADPH oxidase enzymes NOX2 and NOX4, as well as decreased Catalase (CAT) expression levels. Furthermore, we revealed blue LED irradiation-induced autophagy characterized by alterations in autophagy protein markers including Beclin-1, LC3-II/LC3-I and P62. Moreover, we demonstrated an enhanced autophagic flux. The blockage of autophagy displayed a remarkable attenuation of anti-tumour activities of blue LED irradiation. Next, ROS scavenger N-acetyl-L-cysteine (NAC) and NOX inhibitor diphenyleneiodonium (DPI) blocked suppression of OS cell growth, indicating that ROS accumulation might play an essential role in blue LED-induced autophagic OS cell death. Additionally, we observed blue LED irradiation decreased EGFR activation (phosphorylation), which in turn led to Beclin-1 release and subsequent autophagy activation in OS cells. Analysis of EGFR colocalization with Beclin-1 and EGFR-immunoprecipitation (IP) assay further revealed the decreased interaction of EGFR and Beclin-1 upon blue LED irradiation in OS cells. In addition, Beclin-1 down-regulation abolished the effects of blue LED irradiation on OS cells. Collectively, we concluded that blue LED irradiation exhibited anti-tumour effects on OS by triggering ROS and EGFR/Beclin-1-mediated autophagy signalling pathway, representing a potential approach for human OS treatment.


Subject(s)
Autophagic Cell Death , Bone Neoplasms/pathology , Light/adverse effects , Osteosarcoma/pathology , Reactive Oxygen Species/metabolism , Apoptosis , Bone Neoplasms/etiology , Bone Neoplasms/metabolism , Cell Movement , Cell Proliferation , ErbB Receptors/genetics , ErbB Receptors/metabolism , Humans , Osteosarcoma/etiology , Osteosarcoma/metabolism , Phosphorylation , Tumor Cells, Cultured
7.
Theranostics ; 11(6): 3000-3016, 2021.
Article in English | MEDLINE | ID: mdl-33456585

ABSTRACT

N6-methyladenosine (m6A) RNA modification, a dynamic and reversible process, is essential for tissue development and pathogenesis. However, the potential involvement of m6A in the regulation of cardiomyocyte (CM) proliferation and cardiac regeneration remains unclear. In this study, we aimed to investigate the essential role of m6A modification in heart regeneration during postnatal and adult injury. Methods and results: In this study, we identified the downregulation of m6A demethylase ALKBH5, an m6A "eraser" that is responsible for increased m6A methylation, in the heart after birth. Notably, ALKBH5 knockout mice exhibited decreased cardiac regenerative ability and heart function after neonatal apex resection. Conversely, forced expression of ALKBH5 via adeno-associated virus-9 (AAV9) delivery markedly reduced the infarct size, restored cardiac function and promoted CM proliferation after myocardial infarction in juvenile (7 days old) and adult (8-weeks old) mice. Mechanistically, ALKBH5-mediated m6A demethylation improved the mRNA stability of YTH N6-methyladenosine RNA-binding protein 1 (YTHDF1), thereby increasing its expression, which consequently promoted the translation of Yes-associated protein (YAP). The modulation of ALKBH5 and YTHDF1 expression in human induced pluripotent stem cell-derived cardiomyocytes consistently yielded similar results. Conclusion: Taken together, our findings highlight the vital role of the ALKBH5-m6A-YTHDF1-YAP axis in the regulation of CMs to re-enter the cell cycle. This finding suggests a novel potential therapeutic strategy for cardiac regeneration.


Subject(s)
AlkB Homolog 5, RNA Demethylase/genetics , Cell Proliferation/genetics , Heart/physiology , Myocytes, Cardiac/physiology , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Regeneration/genetics , Animals , Cells, Cultured , Humans , Induced Pluripotent Stem Cells/physiology , Methylation , Mice , Mice, Inbred C57BL , Mice, Knockout , Myocardial Infarction/genetics , Myocardial Infarction/physiopathology
8.
Mol Ther Nucleic Acids ; 19: 421-436, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31896070

ABSTRACT

Methyltransferase-like 3 (METTL3) is the main enzyme for N6-methyladenosine (m6A)-based methylation of RNAs and it has been implicated in many biological and pathophysiological processes. In this study, we aimed to explore the potential involvement of METTL3 in osteoblast differentiation and decipher the underlying cellular and molecular mechanisms. We demonstrated that METTL3 is downregulated in human osteoporosis and the ovariectomized (OVX) mouse model, as well as during the osteogenic differentiation. Silence of METTL3 by short interfering RNA (siRNA) decreased m6A methylation levels and inhibited osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and reduced bone mass, and similar effects were observed in METTL3+/- knockout mice. In contrast, adenovirus-mediated overexpression of METTL3 produced the opposite effects. In addition, METTL3 enhanced, whereas METTL3 silence or knockout suppressed, the m6A methylations of runt-related transcription factor 2 (RUNX2; a key transcription factor for osteoblast differentiation and bone formation) and precursor (pre-)miR-320. Moreover, downregulation of mature miR-320 rescued the decreased bone mass caused by METTL3 silence or METTL3+/- knockout. Therefore, METTL3-based m6A modification favors osteogenic differentiation of BMSCs through m6A-based direct and indirect regulation of RUNX2, and abnormal downregulation of METTL3 is likely one of the mechanisms underlying osteoporosis in patients and mice. Thus, METTL3 overexpression might be considered a new approach of replacement therapy for the treatment of human osteoporosis.

9.
Mol Ther Nucleic Acids ; 17: 590-600, 2019 Sep 06.
Article in English | MEDLINE | ID: mdl-31382190

ABSTRACT

Bone marrow-derived mesenchymal stem cells (BMSCs) have been suggested to possess the capacity to differentiate into different cell lineages. Maintaining a balanced stem cell differentiation program is crucial to the bone microenvironment and bone development. MicroRNAs (miRNAs) have played a critical role in regulating the differentiation of BMSCs into particular lineage. However, the role of miR-149-3p in the adipogenic and osteogenic differentiation of BMSCs has not been extensively discovered. In this study, we aimed to detect the expression levels of miR-149-3p during the differentiation of BMSCs and investigate whether miR-149-3p participated in the lineage choice of BMSCs or not. Compared with mimic-negative control (NC), miR-149-3p mimic decreased the adipogenic differentiation potential of BMSCs and increased the osteogenic differentiation potential. Further analysis revealed that overexpression of miR-149-3p repressed the expression of fat mass and obesity-associated (FTO) gene through binding to the 3' UTR of the FTO mRNA. Also, the role of miR-149-3p mimic in inhibiting adipogenic lineage differentiation and potentiating osteogenic lineage differentiation was mainly through targeting FTO, which also played an important role in regulating body weight and fat mass. In addition, BMSCs treated with miR-149-3p anti-miRNA oligonucleotide (AMO) exhibited higher potential to differentiate into adipocytes and lower tendency to differentiate into osteoblasts compared with BMSCs transfected with NC. In summary, our results detected the effects of miR-149-3p in cell fate specification of BMSCs and revealed that miR-149-3p inhibited the adipogenic differentiation of BMSCs via a miR-149-3p/FTO regulatory axis. This study provided cellular and molecular insights into the observation that miR-149-3p was a prospective candidate gene for BMSC-based bone tissue engineering in treating osteoporosis.

10.
J Cell Mol Med ; 23(9): 6140-6153, 2019 09.
Article in English | MEDLINE | ID: mdl-31304676

ABSTRACT

Osteoporosis is closely associated with the dysfunction of bone metabolism, which is caused by the imbalance between new bone formation and bone resorption. Osteogenic differentiation plays a vital role in maintaining the balance of bone microenvironment. The present study investigated whether melatonin participated in the osteogenic commitment of bone marrow mesenchymal stem cells (BMSCs) and further explored its underlying mechanisms. Our data showed that melatonin exhibited the capacity of regulating osteogenic differentiation of BMSCs, which was blocked by its membrane receptor inhibitor luzindole. Further study demonstrated that the expression of miR-92b-5p was up-regulated in BMSCs after administration of melatonin, and transfection of miR-92b-5p accelerated osteogenesis of BMSCs. In contrast, silence of miR-92b-5p inhibited the osteogenesis of BMSCs. The increase in osteoblast differentiation of BMSCs caused by melatonin was attenuated by miR-92b-5p AMO as well. Luciferase reporter assay, real-time qPCR analysis and western blot analysis confirmed that miR-92b-5p was involved in osteogenesis by directly targeting intracellular adhesion molecule-1 (ICAM-1). Melatonin improved the expression of miR-92b-5p, which could regulate the differentiation of BMSCs into osteoblasts by targeting ICAM-1. This study provided novel methods for treating osteoporosis.


Subject(s)
Intercellular Adhesion Molecule-1/genetics , Melatonin/genetics , MicroRNAs/genetics , Osteogenesis/genetics , Bone Resorption/genetics , Bone Resorption/pathology , Bone Resorption/therapy , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line , Humans , Melatonin/pharmacology , Mesenchymal Stem Cells/metabolism , Osteoblasts/drug effects , Osteogenesis/drug effects , Osteoporosis/genetics , Osteoporosis/pathology , Osteoporosis/therapy , Tryptamines/pharmacology
11.
Int J Biol Sci ; 15(2): 386-394, 2019.
Article in English | MEDLINE | ID: mdl-30745828

ABSTRACT

Arsenic trioxide (ATO) has been well recognized as an anti-tumor agent for various human cancers. Recently, the blue light emitting diodes (LEDs)-based therapy has also been demonstrated to be potential therapeutic strategies for several cancers. However, the combination effects of ATO and blue LED on tumor suppression are still unclear. In this study, we determined whether combination of ATO and blue LED irradiation at 470 nm in wavelength exhibited superior anti-tumor activity in human osteosarcoma (OS). We observed that combination treatments of ATO and blue LED much more significantly decreased the percentages of proliferative cells, and increased apoptotic rate compared with any single treatments in U-2 OS cells. Furthermore, we found suppression of cell migration and invasion were much more pronounced in ATO plus blue LED treated group than single treated groups. Moreover, reactive oxygen species (ROS) assay and immunostaining of γ-H2A.X and p53 indicated that the combined treatments resulted in further markedly increases in ROS accumulation, DNA damage and p53 activity. Taken together, our study demonstrated synergistical anti-tumor effects of combined treatments of ATO and blue LED on human OS cells, which were associated with an increased ROS accumulation, DNA damaged mediated p53 activation.


Subject(s)
Apoptosis/drug effects , Apoptosis/radiation effects , Arsenic Trioxide/pharmacology , DNA Damage/drug effects , DNA Damage/radiation effects , Osteosarcoma/metabolism , Tumor Suppressor Protein p53/metabolism , Blotting, Western , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/genetics , Humans , In Situ Nick-End Labeling , Reactive Oxygen Species/metabolism , Tumor Suppressor Protein p53/genetics
12.
Mol Ther ; 27(2): 394-410, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30638773

ABSTRACT

Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to differentiate into osteoblasts or adipocytes, and the shift between osteogenic and adipogenic differentiation determines bone mass. The aim of this study was to identify whether lncRNAs are involved in the differentiation commitment of BMSCs during osteoporosis. Here, we found ORLNC1, a functionally undefined lncRNA that is highly conserved, which exhibited markedly higher expression levels in BMSCs, bone tissue, and the serum of OVX-induced osteoporotic mice than sham-operated counterparts. Notably, a similar higher abundance of lncRNA-ORLNC1 expression was also observed in the bone tissue of osteoporotic patients. The transgenic mice overexpressing lncRNA-ORLNC1 showed a substantial increase in the osteoporosis-associated bone loss and decline in the osteogenesis of BMSCs. The BMSCs pretreated with lncRNA-ORLNC1-overexpressing lentivirus vector exhibited the suppressed capacity of osteogenic differentiation and oppositely enhanced adipogenic differentiation. We then established that lncRNA-ORLNC1 acted as a competitive endogenous RNA (ceRNA) for miR-296. Moreover, miR-296 was found markedly upregulated during osteoblast differentiation, and it accelerated osteogenic differentiation by targeting Pten. Taken together, our results indicated that the lncRNA-ORLNC1-miR-296-Pten axis may be a critical regulator of the osteoporosis-related switch between osteogenesis and adipogenesis of BMSCs and might represent a plausible therapeutic target for improving osteoporotic bone loss.


Subject(s)
Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , RNA, Long Noncoding/metabolism , Adipogenesis/genetics , Adipogenesis/physiology , Animals , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Female , Mice , Mice, Inbred C57BL , Osteoblasts/cytology , Osteoblasts/metabolism , Osteoporosis/genetics , Osteoporosis/metabolism , RNA, Long Noncoding/genetics
13.
Chemosphere ; 221: 314-323, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30641372

ABSTRACT

In the present work, we first examined the performance of zero-valent iron (Fe0) activated peroxymonosulfate (PMS) for the removal of that bisphenol M (BPM). In 90 min, 95.9 ±â€¯1.0% of BPM (initial concentration of 10 µM) could be removed in the optimal reaction conditions: [BPM]0:[PMS]0 = 1:40 (molar ratio), [PMS]0:[Fe0]0 = 1:3 (molar ratio), pH = 8.0 (maintained by 0.1 M phosphate buffer solution), T = 35 °C. Common environmental ions like HCO3-, Cl-, NO3- accelerated BPM degradation while NH4+ hindered it. In radical quenching tests, sulfate radicals (SO4-) were found to play a dominant role in BPM degradation, while hydroxyl radicals (OH) were also detected. By high-performance liquid chromatography-tandem mass spectrometry analysis, 13 products of BPM including small molecules, oligomers and hydroxylated derivatives were identified, and five possible degradation pathways were then proposed. The predicted acute toxicity of the reaction products was reduced after BPM was treated by Fe0/PMS. All these results prove that Fe0/PMS is an efficient, convenient, and environmentally friendly treatment method for the removal of BPM.


Subject(s)
Benzhydryl Compounds/chemistry , Iron , Peroxides , Phenols/chemistry , Water Pollutants, Chemical/chemistry , Free Radicals/chemistry , Hydroxyl Radical , Iron/chemistry , Kinetics , Oxidation-Reduction , Sulfates
SELECTION OF CITATIONS
SEARCH DETAIL
...