Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chin Med J (Engl) ; 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844445

ABSTRACT

BACKGROUND: Although significant advances have been made in the treatment of multiple myeloma (MM), leading to unprecedented response and survival rates among patients, the majority eventually relapse, and a cure remains elusive. This situation is closely related to an incomplete understanding of the immune microenvironment, especially monocytes/macrophages in patients with treatment-naïve MM. The aim of this study was to provide insight into the immune microenvironment, especially monocytes/macrophages, in patients with treatment-naïve MM. METHODS: This study used the single-cell RNA sequencing (scRNA-seq) data of both patients with MM and heathy donors to identify immune cells, including natural killer (NK) cells, T cells, dendritic cells (DCs), and monocytes/macrophages. Transcriptomic data and flow cytometry analysis of monocytes/macrophages were used to further examine the effect of monocytes/macrophages in treatment-naïve MM patients. RESULTS: A significant difference was observed between the bone marrow (BM) immune cells of the healthy controls and treatment-naïve MM patients through scRNA-seq. It is noteworthy that, through an scRNA-seq data analysis, this study found that interferon (IFN)-induced NK/T cells, terminally differentiated effector memory (TEMRA) cells, T-helper cells characterized by expression of IFN-stimulated genes (ISG + Th cells), IFN-responding exhausted T cells, mannose receptor C-type 1 (MRC1) + DCs, IFN-responding DCs, MHCII + DCs, and immunosuppressive monocytes/macrophages are enriched in patients with treatment-naïve MM. Significantly, transcriptomic data of monocytes/macrophages demonstrated that "don't eat me"-related genes and IFN-induced genes increase in treatment-naïve MM patients. Furthermore, scRNA-seq, transcriptomic data, and flow cytometry also showed an increased proportion of CD16 + monocytes/macrophages and expression level of CD16. Cell-cell communication analysis indicated that monocytes/macrophages, especially the migration inhibitory factor (MIF) and interleukin 16 (IL-16) signaling pathway, are key players in treatment-naïve MM patients. CONCLUSIONS: Our findings provide a comprehensive and in-depth molecular characterization of BM immune cell census in MM patients, especially for monocytes/macrophages. Targeting macrophages may be a novel treatment strategy for patients with MM.

2.
J Transl Med ; 22(1): 364, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632610

ABSTRACT

BACKGROUND: Polycystic ovary syndrome (PCOS) is an endocrinological and metabolic disorder that can lead to female infertility. Lipid metabolomics and proteomics are the new disciplines in systems biology aimed to discover metabolic pathway changes in diseases and diagnosis of biomarkers. This study aims to reveal the features of PCOS to explore its pathogenesis at the protein and metabolic level. METHODS: We collected follicular fluid samples and granulosa cells of women with PCOS and normal women who underwent in vitro fertilization(IVF) and embryo transfer were recruited. The samples were for the lipidomic study and the proteomic study based on the latest metabolomics and proteomics research platform. RESULTS: Lipid metabolomic analysis revealed abnormal metabolism of glycerides, glycerophospholipids, and sphingomyelin in the FF of PCOS. Differential lipids were strongly linked with the rate of high-quality embryos. In total, 144 differentially expressed proteins were screened in ovarian granulosa cells in women with PCOS compared to controls. Go functional enrichment analysis showed that differential proteins were associated with blood coagulation and lead to follicular development disorders. CONCLUSION: The results showed that the differential lipid metabolites and proteins in PCOS were closely related to follicle quality,which can be potential biomarkers for oocyte maturation and ART outcomes.


Subject(s)
Polycystic Ovary Syndrome , Female , Humans , Follicular Fluid/chemistry , Follicular Fluid/metabolism , Proteomics , Biomarkers/metabolism , Lipids
3.
J Xenobiot ; 14(1): 333-349, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38535496

ABSTRACT

Salinity is a major abiotic stress that seriously affects crop growth worldwide. In this work, we aimed to isolate potential halotolerant plant growth-promoting rhizobacteria (PGPR) to mitigate the adverse impacts of salt stress in rice. An isolate, D2, with multiple plant growth-promoting (PGP) characteristics was identified as Enterobacter asburiae D2. Strain D2 could produce indole-3-acetic acid and siderophore. It also exhibited phosphate solubilization and 1-aminocyclopropane-1-carboxylic deaminase activity. Genome analysis further provided insights into the molecular mechanism of its PGP abilities. Strain D2 inoculation efficiently stimulated rice growth under both normal and saline conditions. Compared with the non-inoculated plants, a significant increase in plant height (18.1-34.7%), root length (25.9-57.1%), root dry weight (57.1-150%), and shoot dry weight (17.3-50.4%) was recorded in inoculated rice seedlings. Meanwhile, rice seedlings inoculated with strain D2 showed improvement in chlorophyll and proline content, while the oxidant damage was reduced in these plants in comparison with the control group. Moreover, the K+/Na+ ratio of the inoculated rice seedlings exposed to NaCl and Na2CO3 was higher than that of the uninoculated groups. These results imply that Enterobacter asburiae D2 is a potential PGPR that can be used for alleviation of salt stress in rice.

4.
Drug Resist Updat ; 74: 101068, 2024 May.
Article in English | MEDLINE | ID: mdl-38402670

ABSTRACT

The treatment for trastuzumab-resistant breast cancer (BC) remains a challenge in clinical settings. It was known that CD47 is preferentially upregulated in HER2+ BC cells, which is correlated with drug resistance to trastuzumab. Here, we developed a novel anti-CD47/HER2 bispecific antibody (BsAb) against trastuzumab-resistant BC, named IMM2902. IMM2902 demonstrated high binding affinity, blocking activity, antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP), and internalization degradation effects against both trastuzumab-sensitive and trastuzumab-resistant BC cells in vitro. The in vivo experimental data indicated that IMM2902 was more effective than their respective controls in inhibiting tumor growth in a trastuzumab-sensitive BT474 mouse model, a trastuzumab-resistant HCC1954 mouse model, two trastuzumab-resistant patient-derived xenograft (PDX) mouse models and a cord blood (CB)-humanized HCC1954 mouse model. Through spatial transcriptome assays, multiplex immunofluorescence (mIFC) and in vitro assays, our findings provided evidence that IMM2902 effectively stimulates macrophages to generate C-X-C motif chemokine ligand (CXCL) 9 and CXCL10, thereby facilitating the recruitment of T cells and NK cells to the tumor site. Moreover, IMM2902 demonstrated a high safety profile regarding anemia and non-specific cytokines release. Collectively, our results highlighted a novel therapeutic approach for the treatment of HER2+ BCs and this approach exhibits significant anti-tumor efficacy without causing off-target toxicity in trastuzumab-resistant BC cells.


Subject(s)
Antibodies, Bispecific , Breast Neoplasms , CD47 Antigen , Drug Resistance, Neoplasm , Immunotherapy , Receptor, ErbB-2 , Trastuzumab , Xenograft Model Antitumor Assays , Humans , Animals , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/immunology , Breast Neoplasms/pathology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Female , Drug Resistance, Neoplasm/drug effects , Mice , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/immunology , Receptor, ErbB-2/metabolism , CD47 Antigen/antagonists & inhibitors , CD47 Antigen/immunology , Immunotherapy/methods , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Cell Line, Tumor , Antibody-Dependent Cell Cytotoxicity/drug effects , Phagocytosis/drug effects
5.
J Assist Reprod Genet ; 41(4): 1087-1096, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38321265

ABSTRACT

PURPOSE: Decreased ovarian reserve function is mainly characterized by female endocrine disorders and fertility decline. Follicular fluid (FF) exosomal microRNAs (miRNAs) have been shown to regulate the function of granulosa cells (GCs). The present study explored differentially expressed miRNAs (DEmiRNAs) in patients with diminished ovarian reserve (DOR). METHODS: FF was collected from 12 DOR patients and 12 healthy controls. DEmiRNAs between the two groups were identified and analyzed using high-throughput sequencing technology and validated by real-time quantitative PCR (RT-qPCR). RESULTS: A total of 592 DEmiRNAs were identified using high-throughput miRNA sequencing, of which 213 were significantly upregulated and 379 were significantly downregulated. The sequencing results were further validated by RT-qPCR. These DEmiRNA target genes were mainly involved in the cancer pathway, phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway, regulation of actin cytoskeleton signaling pathway, and biological processes related to protein binding, nucleoplasm, cytoplasm, and cell membrane. CONCLUSION: FF exosomal miRNAs are significantly differentially expressed in DOR patients versus non-DOR patients, underscoring their crucial role in regulating the pathogenesis of DOR.


Subject(s)
Exosomes , Follicular Fluid , MicroRNAs , Ovarian Reserve , Humans , Female , Follicular Fluid/metabolism , MicroRNAs/genetics , Exosomes/genetics , Exosomes/metabolism , Ovarian Reserve/genetics , Adult , Granulosa Cells/metabolism , Granulosa Cells/pathology , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Signal Transduction/genetics , High-Throughput Nucleotide Sequencing , Gene Expression Regulation/genetics , Gene Expression Profiling
6.
J Cosmet Dermatol ; 23(4): 1374-1385, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38105431

ABSTRACT

BACKGROUND: Exosomes are small vesicles released from cells and are found in various mammalian biological fluids, such as bovine milk, which has been employed in skincare for many years, apart from its dairy applications. In addition, exosomes have been recognized as vehicles for intercellular communication. AIMS: In this study, we aimed to investigate the novel effects of bovine milk-derived exosomes (MK-Exo) on antiaging in human skin. METHODS: Initially, MK-Exo were co-cultured with keratinocytes and fibroblasts; subsequent analysis involved qPCR and western blotting to assess induced gene expression. Subsequently, MK-Exo were topically applied to the facial skin of 31 female volunteers twice daily for 28 days. The functions were evaluated after conducting safety assessments in vivo. RESULTS: Purified MK-Exo demonstrated the ability to be taken up directly by keratinocytes and fibroblasts in vitro, resulting in the upregulation of natural factors associated with skin moisturization, including filaggrin (FLG), aquaporin 3 (AQP3), and CD44 in keratinocytes, as well as hyaluronidase (HAS2) in fibroblasts. Concurrently, MK-Exo promoted fibroblast cell migration and restored the expression of type I and III collagen (Col I and Col III) following exposure to ultraviolet radiation. Furthermore, phototoxicity, photoallergy, repeated skin irritation, skin allergy, and patch tests confirmed the safety of MK-Exo for skin application. Finally, we elucidated the roles of MK-Exo in preserving moisture and reducing wrinkles in humans. CONCLUSION: Our findings unveil the novel contributions of MK-Exo to human skin aging, presenting a new avenue in the field of skincare.


Subject(s)
Exosomes , Animals , Female , Humans , Exosomes/metabolism , Ultraviolet Rays/adverse effects , Milk , Skin/metabolism , Keratinocytes , Mammals
7.
Clin Epigenetics ; 15(1): 86, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179374

ABSTRACT

Polycystic ovary syndrome (PCOS) is an endocrine and metabolic disorder characterized by chronic low-grade inflammation. Previous studies have demonstrated that the gut microbiome can affect the host tissue cells' mRNA N6-methyladenosine (m6A) modifications. This study aimed to understand the role of intestinal flora in ovarian cells inflammation by regulating mRNA m6A modification particularly the inflammatory state in PCOS. The gut microbiome composition of PCOS and Control groups was analyzed by 16S rRNA sequencing, and the short chain fatty acids were detected in patients' serum by mass spectrometry methods. The level of butyric acid was found to be decreased in the serum of the obese PCOS group (FAT) compared to other groups, and this was correlated with increased Streptococcaceae and decreased Rikenellaceae based on the Spearman's rank test. Additionally, we identified FOSL2 as a potential METTL3 target using RNA-seq and MeRIP-seq methodologies. Cellular experiments demonstrated that the addition of butyric acid led to a decrease in FOSL2 m6A methylation levels and mRNA expression by suppressing the expression of METTL3, an m6A methyltransferase. Additionally, NLRP3 protein expression and the expression of inflammatory cytokines (IL-6 and TNF-α) were downregulated in KGN cells. Butyric acid supplementation in obese PCOS mice improved ovarian function and decreased the expression of local inflammatory factors in the ovary. Taken together, the correlation between the gut microbiome and PCOS may unveil crucial mechanisms for the role of specific gut microbiota in the pathogenesis of PCOS. Furthermore, butyric acid may present new prospects for future PCOS treatments.


Subject(s)
Polycystic Ovary Syndrome , Humans , Mice , Animals , Female , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/genetics , Polycystic Ovary Syndrome/metabolism , Butyric Acid/metabolism , RNA, Ribosomal, 16S/metabolism , DNA Methylation , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Methyltransferases/genetics , Methyltransferases/metabolism , Fatty Acids, Volatile/metabolism , Granulosa Cells , RNA, Messenger/genetics , Obesity/drug therapy , Obesity/genetics , Obesity/metabolism , Fos-Related Antigen-2/genetics , Fos-Related Antigen-2/metabolism
8.
Comput Intell Neurosci ; 2021: 6702625, 2021.
Article in English | MEDLINE | ID: mdl-34987568

ABSTRACT

In the real-world scenario, data often have a long-tailed distribution and training deep neural networks on such an imbalanced dataset has become a great challenge. The main problem caused by a long-tailed data distribution is that common classes will dominate the training results and achieve a very low accuracy on the rare classes. Recent work focuses on improving the network representation ability to overcome the long-tailed problem, while it always ignores adapting the network classifier to a long-tailed case, which will cause the "incompatibility" problem of network representation and network classifier. In this paper, we use knowledge distillation to solve the long-tailed data distribution problem and fully optimize the network representation and classifier simultaneously. We propose multiexperts knowledge distillation with class-balanced sampling to jointly learn high-quality network representation and classifier. Also, a channel activation-based knowledge distillation method is also proposed to improve the performance further. State-of-the-art performance on several large-scale long-tailed classification datasets shows the superior generalization of our method.


Subject(s)
Knowledge Bases , Neural Networks, Computer , Distillation , Research Design
9.
J Mol Histol ; 40(3): 227-33, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19847657

ABSTRACT

Prelid2, which belongs to the PRELI domain containing family, is identified as a conserved evolution gene. The expression and regulation during embryonic development of the prelid2 gene is unknown. In this study, we investigated the prelid2 gene expression and regulation using mouse embryos model, by in situ hybridization analysis, RT-PCR and bisulfite sequencing. In situ hybridization analysis showed that prelid2 gene expression were found in midbrain, spinal cord, optic eminence, otic vesicle and tail at E9.5 and E10.5 embryos, in forebrain, hindbrain, heart, lung, liver and kidney at E13.5 and E15.5 embryos. Real-time quantitative RT-PCR results verified the expression pattern in the four major mouse organs, brain, heart, lung, and liver during organs differentiation and formation. Bisulfite sequencing illustrated the consistent result of expression and its unmethylation status in the genomic promoter region at E12.5, E18.5, and new born. Thus, the prelid2 gene is a widely-spread, persistently expressed and unmethylated gene in mouse embryonic development. Our results suggest that the PRELI domain containing 2 gene is involved in mouse embryonic development.


Subject(s)
Embryonic Development/genetics , Mitochondrial Proteins/genetics , Nuclear Proteins/genetics , Animals , DNA Methylation/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Evolution, Molecular , Female , Gene Expression Regulation, Developmental , Male , Mice , Mice, Inbred C57BL , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Phylogeny , Pregnancy , Protein Structure, Tertiary , Sequence Analysis, Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...