Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37570309

ABSTRACT

L-ascorbic acid (ASA) is a micronutrient that is essential for reproduction, growth, and immunity in animals. Due to the loss of enzyme L-gulono-1,4-lactone oxidase (GLO), most aquatic animals lack the capacity for ASA biosynthesis and therefore require supplementation with exogenous ASA. Recent studies have shown that 2-keto-L-gulonic acid (2KGA), a novel potential precursor of ASA, can enhance plant growth and improve stress resistance by promoting the synthesis and accumulation of ASA. Our hypothesis is that 2-keto-L-gulonic acid (2KGA) plays a similar role in aquatic animals. To investigate this, we conducted an in vivo trial to examine the effects of exogenous 2KGA supplementation on ASA metabolism and growth of zebrafish (Danio rerio). Zebrafish were categorized into groups based on their dietary intake, including a basal diet (CK group), a basal diet supplemented with 800 mg/kg ASA (ASA group), and 800 mg/kg 2KGA-Na (2KGA group) for a duration of three weeks. The results demonstrated a significant increase in ASA content in zebrafish treated with 2KGA (34.82% increase, p < 0.05) compared to the CK group, reaching a consistent level with the ASA group (39.61% increase, p < 0.05). Furthermore, the supplementation of 2KGA significantly improved growth parameters relevant to zebrafish (specific growth rate increased by 129.04%, p < 0.05) and enhanced feed utilization (feed intake increased by 15.65%, p < 0.05). Positive correlations were observed between growth parameters, feed utilization, whole-body chemical composition, and ASA content. Our findings suggest that supplementation with exogenous 2KGA can serve as a novel approach for elevating ASA synthesis in aquatic animals, and further investigation of its underlying mechanism is required.

2.
Sci Total Environ ; 851(Pt 2): 158253, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36037898

ABSTRACT

The potential of industrial effluents from vitamin C (VC) production was assessed for agricultural applications by monitoring plant growth, soil properties, and microbial community structure. The results demonstrated that two types of effluents-residue after evaporation (RAE) and concentrated bacterial solution after ultrafiltration (CBS)-had positive effects on the yield and VC content of pak choi. The highest yield and VC content were achieved with a combined RAE-CBS treatment (55.82 % and 265.01 % increase, respectively). The soil fertility was also enhanced by the application of RAE and CBS. Nitrate nitrogen and organic carbon contents in the soil were positively correlated with the RAE addition, while ammonium nitrogen and available phosphorus were positively correlated with the CBS addition. The diversity of bulk and rhizosphere soil bacterial communities increased significantly after the addition of RAE-CBS. The abundance of Sphingomonas and Rhizobium significantly increased after the RAE-CBS treatment, which affected aromatic compound hydrolysis and nitrogen fixation positively. Changes in plant growth and soil fertility were closely related to the upregulation of functional gene expression related to C, N, and P cycling. RAE and CBS application exerted various positive synergistic effects on plant growth, soil fertility, and bacterial community structure. Consequently, the study results confirmed the potential of RAE and CBS application in agriculture. This study provides an innovative solution for utilizing VC industrial wastewater in agriculture in a resourceful and economically beneficial manner while alleviating the corresponding environmental burden.


Subject(s)
Ammonium Compounds , Soil , Soil/chemistry , Rhizosphere , Soil Microbiology , Ascorbic Acid , Wastewater , Nitrates , Agriculture/methods , Bacteria/metabolism , Nitrogen/metabolism , Phosphorus , Carbon
3.
Microorganisms ; 10(3)2022 Mar 03.
Article in English | MEDLINE | ID: mdl-35336128

ABSTRACT

Laboratory animals with human microbiome have increasingly been used to study the role of bacteria and host interaction. Drosophila melanogaster, as a model of microbiota-host interaction with high reproductive efficiency and high availability, has always been lacking studies of interaction with human gut microbiome. In this study, we attempted to use antibiotic therapy and human fecal exposure strategy to transfer the human microbiome to the drosophila. The method includes depleting the original intestinal bacteria using a broad-spectrum antibiotic and then introducing human microorganisms by a diet supplemented with donor's fecal samples. The sequencing results showed that 80-87.5% of the OTUs (Operational Taxonomic Units) from donor feces were adopted by the recipient drosophila following 30 days of observation. In comparison to females, the male recipient drosophila inherited more microbiota from the donor feces and had significantly increased lifespan as well as improved vertical climbing ability. Furthermore, distinctly differential expression patterns for age and insulin-like signaling-related genes were obtained for the male vs. female recipients. Only the male drosophila offspring acquired the characteristics of the donor fecal microbiota.

4.
Front Plant Sci ; 12: 697184, 2021.
Article in English | MEDLINE | ID: mdl-34804078

ABSTRACT

Salt stress has long been a prominent obstacle that restricts crop growth, and increasing the L-ascorbic acid (ASA) content of crops is an effective means of alleviating this stress. 2-Keto-L-gulonic acid (2KGA) is a precursor used in industrial ASA production as well as an ASA degradation product in plants. However, to date, no study has investigated the effects of 2KGA on ASA metabolism and salt stress. Here, we evaluated the potential of using 2KGA to improve crop resistance to salt stress (100mM NaCl) through a cultivation experiment of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). The results showed that the leaf and root biomass were significantly improved by 2KGA application. The levels of metabolites and enzymes related to stress resistance were increased, whereas the hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents were decreased. Lipid peroxidation and cell membrane damage were alleviated following 2KGA treatment. Positive correlations were found between photosynthetic pigments and organic solutes, ASA and photosynthetic pigments, and ASA and antioxidant enzymes. In contrast, negative correlations were observed between antioxidant enzymes and H2O2/MDA. Moreover, the expression levels of L-gulono-1,4-lactone oxidase, GDP-mannose pyrophosphorylase, dehydroascorbate reductase-3, and ascorbate peroxidase were increased by 2KGA treatment. These results suggested that exogenous 2KGA application can relieve the inhibitory effect of salt stress on plant growth, and the promotion of ASA synthesis may represent a critical underlying mechanism. Our findings have significant implications for the future application of 2KGA or its fermentation residue in agriculture.

5.
Microorganisms ; 8(7)2020 Jul 11.
Article in English | MEDLINE | ID: mdl-32664584

ABSTRACT

The insulin receptor (InR) pertains to the insulin receptor family, which plays a key role in the insulin/insulin-like growth factor (IGF)-like signaling (IIS) pathway. Insulin signaling defects may result in the development of metabolic diseases, such as type 2 diabetes, and the InR mutant has been suggested to bear insulin signaling deficiency. Numerous studies have reported that probiotics are beneficial for the treatment of diabetes; however, the effect of probiotics on patients with InR deficiency has seldom been reported. Therefore, we chose the InR[E19]/TM2 Drosophila melanogaster to investigate. The results indicated that probiotics significantly reduce the mean and median lifespan of InR[E19]/TM2 Drosophila (by 15.56% and 23.82%, respectively), but promote that of wild-type files (by 9.31% and 16.67%, respectively). Significant differences were obtained in the expression of lifespan- and metabolism-related genes, such as Imp-L2, Tor, and GstD2, between the standard diet groups and the probiotics groups. Furthermore, analysis of 16S rDNA via high throughput sequencing revealed that the gut bacterial diversity of Drosophila fed with a probiotic combination also differs from that of Drosophila fed with a standard diet. In summary, these findings indicate that a probiotic combination indeed affects InR[E19]/TM2 Drosophila, but not all of its impacts are positive.

6.
Bioresour Technol ; 193: 331-6, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26143000

ABSTRACT

To prepare fermentable hydrolysate from corncob residue (CCR), Trichoderma strain G26 was cultured on medium containing CCR for production of cellulolytic enzymes through solid-state fermentation (SSF), resulting in 71.3 IU/g (FPA), 136.2 IU/g (CMCase), 85.1 IU/g (ß-glucosidase) and 11,344 IU/g (xylanase), respectively. Through a three-stage saccharification strategy, CCR was hydrolyzed by the enzymatic solution (6.5 FPU/ml) into fermentable hydrolysate containing 60.1g/l glucose (81.2% cellulose was converted at solid loading of 12.5%), 21.4% higher than that by the one-stage method. And then the hydrolysate was used to produce L-lactic acid by a previous screened strain Bacillus coagulans ZX25 in the submerged fermentation. 52.0 g/l L-lactic acid was obtained after fermentation for 44 h, with 86.5% glucose being converted to L-lactic acid. The results indicate that the strains and the hydrolysis strategy are promising for commercial production of L-lactic acid from CCR and other biomass.


Subject(s)
Cellulase/metabolism , Cellulose/metabolism , Lactic Acid/biosynthesis , Trichoderma/enzymology , Waste Products/analysis , Zea mays/chemistry , Carbohydrate Metabolism/drug effects , Fermentation/drug effects , Hydrolysis/drug effects , Surface-Active Agents/pharmacology , Time Factors
7.
Bioorg Med Chem Lett ; 23(23): 6421-6, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24120543

ABSTRACT

In the present study, andrographolide (Andro, 1) derivatives were screened to identify potent inhibitors against tumor-cell migration and invasion, and associated structure-activity relationships were studied. Compared to 1, compounds 8a-8d exhibited more potent activities against migration in SGC-7901, PC-3, A549, HT-29 and Ec109 cell lines. Improved activities against tumor-cell migration and invasion were proved to be associated with the down-regulation of MMPs.


Subject(s)
Cell Movement/drug effects , Diterpenes/chemistry , Diterpenes/pharmacology , Neoplasms/drug therapy , Cell Proliferation/drug effects , Diterpenes/chemical synthesis , Drug Screening Assays, Antitumor , HT29 Cells , Humans , Neoplasms/pathology , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...