Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 5343, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33674688

ABSTRACT

Designed or patterned structured surfaces, metasurfaces, enable the miniaturization of complex arrangements of optical elements on a plane. Most of the existing literature focuses on miniaturizing the optical detection; little attention is directed to on-chip optical excitation. In this work, we design a metasurface to create a planar integrated photonic source beam collimator for use in on-chip optofluidic sensing applications. We use an iterative inverse design approach in order to optimize the metasurface to achieve a target performance using gradient descent method. We then fabricate beam collimators and experimentally compare performance characteristics with conventional uniform binary grating-based photonic beam diffractors. The optimal design enhances the illumination power by a factor of 5. The reinforced beam is more uniform with 3 dB beam spot increased almost ~ 3 times for the same device footprint area. The design approach will be useful in on-chip applications of fluorescence imaging, Raman, and IR spectroscopy and will enable better multiplexing of light sources for high throughput biosensing.

2.
Proc Natl Acad Sci U S A ; 114(45): E9455-E9464, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078394

ABSTRACT

Recent work demonstrates that processes of stress release in prestrained elastomeric substrates can guide the assembly of sophisticated 3D micro/nanostructures in advanced materials. Reported application examples include soft electronic components, tunable electromagnetic and optical devices, vibrational metrology platforms, and other unusual technologies, each enabled by uniquely engineered 3D architectures. A significant disadvantage of these systems is that the elastomeric substrates, while essential to the assembly process, can impose significant engineering constraints in terms of operating temperatures and levels of dimensional stability; they also prevent the realization of 3D structures in freestanding forms. Here, we introduce concepts in interfacial photopolymerization, nonlinear mechanics, and physical transfer that bypass these limitations. The results enable 3D mesostructures in fully or partially freestanding forms, with additional capabilities in integration onto nearly any class of substrate, from planar, hard inorganic materials to textured, soft biological tissues, all via mechanisms quantitatively described by theoretical modeling. Illustrations of these ideas include their use in 3D structures as frameworks for templated growth of organized lamellae from AgCl-KCl eutectics and of atomic layers of WSe2 from vapor-phase precursors, as open-architecture electronic scaffolds for formation of dorsal root ganglion (DRG) neural networks, and as catalyst supports for propulsive systems in 3D microswimmers with geometrically controlled dynamics. Taken together, these methodologies establish a set of enabling options in 3D micro/nanomanufacturing that lie outside of the scope of existing alternatives.


Subject(s)
Nanostructures/chemistry , Tissue Scaffolds/chemistry , Animals , Ganglia, Spinal/cytology , Male , Nerve Net/cytology , Printing, Three-Dimensional , Rats , Rats, Sprague-Dawley , Temperature , Tissue Engineering/methods
3.
Sci Adv ; 2(9): e1601014, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27679820

ABSTRACT

Capabilities for assembly of three-dimensional (3D) micro/nanostructures in advanced materials have important implications across a broad range of application areas, reaching nearly every class of microsystem technology. Approaches that rely on the controlled, compressive buckling of 2D precursors are promising because of their demonstrated compatibility with the most sophisticated planar technologies, where materials include inorganic semiconductors, polymers, metals, and various heterogeneous combinations, spanning length scales from submicrometer to centimeter dimensions. We introduce a set of fabrication techniques and design concepts that bypass certain constraints set by the underlying physics and geometrical properties of the assembly processes associated with the original versions of these methods. In particular, the use of releasable, multilayer 2D precursors provides access to complex 3D topologies, including dense architectures with nested layouts, controlled points of entanglement, and other previously unobtainable layouts. Furthermore, the simultaneous, coordinated assembly of additional structures can enhance the structural stability and drive the motion of extended features in these systems. The resulting 3D mesostructures, demonstrated in a diverse set of more than 40 different examples with feature sizes from micrometers to centimeters, offer unique possibilities in device design. A 3D spiral inductor for near-field communication represents an example where these ideas enable enhanced quality (Q) factors and broader working angles compared to those of conventional 2D counterparts.

4.
Adv Funct Mater ; 26(16): 2629-2639, 2016 Apr 25.
Article in English | MEDLINE | ID: mdl-27499727

ABSTRACT

Origami is a topic of rapidly growing interest in both the scientific and engineering research communities due to its promising potential in a broad range of applications. Previous assembly approaches of origami structures at the micro/nanoscale are constrained by the applicable classes of materials, topologies and/or capability of control over the transformation. Here, we introduce an approach that exploits controlled mechanical buckling for autonomic origami assembly of 3D structures across material classes from soft polymers to brittle inorganic semiconductors, and length scales from nanometers to centimeters. This approach relies on a spatial variation of thickness in the initial 2D structures as an effective strategy to produce engineered folding creases during the compressive buckling process. The elastic nature of the assembly scheme enables active, deterministic control over intermediate states in the 2D to 3D transformation in a continuous and reversible manner. Demonstrations include a broad set of 3D structures formed through unidirectional, bidirectional, and even hierarchical folding, with examples ranging from half cylindrical columns and fish scales, to cubic boxes, pyramids, starfish, paper fans, skew tooth structures, and to amusing system-level examples of soccer balls, model houses, cars, and multi-floor textured buildings.

SELECTION OF CITATIONS
SEARCH DETAIL
...