Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
Add more filters










Publication year range
1.
Water Res ; 226: 119200, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36257154

ABSTRACT

To improve the performance of the conventional coagulation process, a permanganate (Mn(VII)) pre-oxidation combined with Fe(III)/peroxymonosulfate (PMS) coagulation process (Mn(VII)-Fe(III)/PMS) that can significantly improve the removal of dissolved organic carbon (DOC), turbidity, and micropollutants is proposed in this study. Compared with conventional Fe(III) coagulation, the Mn(VII)-Fe(III)/PMS process can also significantly enhance the removal of iohexol and sulfamethoxazole in raw water. During this process, the primary reduction product, Mn(IV), after Mn(VII) pre-oxidation was adsorbed on the floc surfaces and involved in the Fe(III)/PMS process. The natural organic matter (NOM) in raw water mediated the redox cycle of iron. The synergistic effect of NOM, Fe, and Mn facilitated the redox cycle of Mn(III)/Mn(IV) and Fe(III)/Fe(II) to promote the activation of PMS. The sulfate radical (SO4•-) played an important role in the degradation of micropollutants. The formation potential of the detected volatile disinfection by-product (DBP) during the subsequent chlorination was reduced by 21.9% after the Mn(VII)-Fe(III)/PMS process. This study demonstrated the promising application of the Mn(VII)-Fe(III)/PMS process for coagulation and micropollutant control and illustrated the reaction mechanism. This study provides guidance for improving conventional drinking water treatment processes.


Subject(s)
Ferric Compounds , Water Purification , Peroxides , Oxidation-Reduction
2.
Water Res ; 219: 118528, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35569275

ABSTRACT

Permanganate (Mn(VII)) is widely used as a mild oxidant in water treatment. However, the reaction rates of some emerging contaminants with Mn(VII) are extremely low. In this study, benzoquinone (BQ), a redox mediator with the important component in dissolved organic matter (DOM), enhanced the oxidation of bisphenol A (BPA) by Mn(VII) in a wide pH range of 4.0-10.0. The redox cycle of BQ would produce semiquinone radicals, which could act as ligands to stabilize the formed Mn(III) in the system to promote the oxidation of BPA. Notably, the presence of BQ might promote the formation of MnO2. A novel mechanism was proposed that singlet oxygen (1O2), Mn(III)-ligands (Mn(III)-L) and in-situ formed MnO2 were the main contributors to accelerate BPA degradation in the Mn(VII)/BQ system. Under acidic conditions, the in-situ formed MnO2 involved in the redox reaction and part of the Mn(IV) was reduced to Mn(III), indicating that the electron transfer of BQ promoted the formation of active Mn species and enhanced the Mn(VII) oxidation performance. Semiquinone radicals generated by BQ transformation would couple with the hydrogen substitution products of BPA to inhibit BPA self-coupling and promote the ring-opening reactions of BPA. Mn(VII)/BQ had better effect in raw water than in pure water, indicating that the Mn(VII)/BQ system has high potential for practical application. This study provided insights into the role of DOM in enhancing the Mn(VII) oxidation in water treatment.


Subject(s)
Manganese Compounds , Oxides , Benzhydryl Compounds , Benzoquinones , Ligands , Oxidation-Reduction , Phenols , Quinones
3.
J Hazard Mater ; 429: 128370, 2022 05 05.
Article in English | MEDLINE | ID: mdl-35121291

ABSTRACT

Iodinated trihalomethanes (I-THMs) have drawn increasing concerns due to their higher toxicity than those of their chlorinated and brominated analogues. In this study, I-THM formation was firstly evaluated for three treatment scenarios - (i) chlorine alone, (ii) chloramine alone, and (iii) mixed chlorine/chloramine - in the presence and absence of UV irradiation for the iodide-containing humic acid solution or natural water. The results indicated that I-THM formation decreased in the order of mixed chlorination/chloramination > chloramination > > chlorination, which fitted the trend of toxicity evaluation results using Chinese hamster ovary cells. Conversely, total organic halide concentration decreased in the order of chlorination > > chloramination ≈ mixed chlorination/chloramination. Besides, I-THM formation can be efficiently controlled in a UV-activated mixed chlorine/chloramine system. Influencing factors including pH values and Br-/I- molar ratios were also systematically investigated in a mixed chlorine/chloramine system. Enhanced I-THM formation was observed with increasing pH values (6.0-8.0) and Br-/I- molar ratios (1: 1-10: 1). The results obtained in this study can provide new insights into the increasing risk of I-THM formation in a mixed chlorine/chloramine system and the effective control of I-THMs in the iodide-containing water using UV irradiation.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Animals , CHO Cells , Chloramines , Chlorine , Cricetinae , Cricetulus , Disinfection/methods , Halogenation , Trihalomethanes , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification/methods
4.
Ultrason Sonochem ; 82: 105906, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34979456

ABSTRACT

The present study comparatively investigated the ultrasonic degradation of ketoprofen (KET) and paracetamol (PCT) in water. Ultrasonic irradiation at 555 kHz achieved rapid degradation of KET and PCT in water, the removal efficiencies of KET (2.5-80 µM) and PCT (2.5-80 µM) reached 87.7%-100% and 50.6%-86.9%, respectively, after 10 min of reaction under an ultrasonic power of 60 W. The degradation behaviors of both KET and PCT followed the Langmuir-Hinshelwood model. KET was eliminated faster than PCT because of its higher hydrophobicity. Acidic media favored ultrasonic degradation of KET and PCT. Organic compounds in water matrices exerted a great negative effect on the ultrasonic degradation rates of KET and PCT major by competing with target compounds with the generated radicals at the bubble/water interfacial region. The effects of anions were species dependent. The introduction of ClO4- and Cl- enhanced KET and PCT degradation to different extents, while the introduction of HCO3- posed a negative effect on both KET and PCT. KET and PCT degradation are accompanied by the generation of several transform intermediates, as identified via LC/MS/MS analysis, and corresponding reaction pathways have been proposed. A human umbilical vein endothelial cell (HUVEC) toxicity evaluation indicated that ultrasonic treatment was capable of controlling the toxicity of KET or PCT degradation. Of note, the enhanced formation of disinfection byproducts (DBPs), i.e., trichloromethane (TCM) and trichloronitromethane (TCNM), was found due to chlorination after ultrasonic treatment for both KET and PCT.


Subject(s)
Ultrasonics , Acetaminophen , Disinfection , Humans , Ketoprofen , Kinetics , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis , Water Purification
5.
Environ Sci Pollut Res Int ; 29(12): 17866-17877, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34674129

ABSTRACT

In this study, electrochemically activated peroxymonosulfate (EC/PMS) with a sacrificial iron electrode was used for the removal of chloramphenicol (CAP) from water. Compared to electrolysis alone, peroxymonosulfate (PMS) alone, and Fe2+/PMS, EC/PMS significantly enhanced the CAP degradation. Various parameters, such as the applied current, electrolyte concentration, and PMS dose, were investigated to optimize the process. In addition, acidic conditions facilitated the CAP degradation. The presence of Cl- slightly enhanced the CAP degradation, while both HCO3- and NO3- exhibited an inhibitory effect on the CAP degradation. The floccules were also analyzed after the reaction by XPS and XRD. Quenching experiments indicated that both sulfate radicals (SO4●-) and hydroxyl radicals (•OH) were responsible for the CAP degradation. In addition, the degradation products were identified by LC/TOF/MS, and the degradation pathways were proposed accordingly. These results indicated that EC/PMS is a promising treatment process for the remediation of water polluted by CAP.


Subject(s)
Chloramphenicol , Water Pollutants, Chemical , Hydroxyl Radical , Peroxides , Water , Water Pollutants, Chemical/analysis
6.
Chemosphere ; 286(Pt 2): 131747, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34358893

ABSTRACT

Pyrimidine and purine bases (adenine, cytosine, guanine and thymine) are important precursors of organic chloramines (OC) and disinfection by-products (DBPs) during chlor(am)ination. In this study, OC and DBP formation derived from pyrimidine and purine bases during chlor(am)ination, post-chlor(am)ination after pretreated by UV alone and UV/chlorination were systematically investigated with ultraviolet light-emitting diodes (UV-LEDs, 265 and 275 nm) and low pressure mercury lamp (LPUV, 254 nm). The results revealed that higher OC formation was observed during chlorination than that during chloramination of pyrimidine and purine bases. The degradation of pyrimidine and purine bases followed the pseudo-first-order kinetics. Both solution pH and UV wavelength played vital influence on the degradation of pyrimidine and purine bases. In terms of fluence-based rate constants (kobs), the degradation rates of pyrimidine and purine bases decreased in the order of 275 nm > 265 nm > 254 nm in alkaline conditions. The synergistic effects of kobs, chlorine,kobs, •OH and kobs, RCS contributed to the differences of pyrimidine and purine bases degradation at different pH values and UV wavelengths. A vital suppression of OC formation was observed during post-chlorination after pretreated by 275 nm UV-LED/chlorination. In addition, compared with LPUV (254 nm), less DBP formation was observed at UV-LED (275 nm), especially during the UV/chlorine process. The phenomena obtained in this study indicated that 275 nm UV-LED combined with chlorine could be a preferred method to promote pyrimidine and purine bases degradation and control OC and DBP formation in practical water treatment.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Chloramines , Chlorine , Disinfection , Halogenation , Purines , Pyrimidines , Water Pollutants, Chemical/analysis
7.
Water Res ; 203: 117549, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34419919

ABSTRACT

Odors and tastes have become universal problems related to drinking water quality. In addition to the typical odor problems caused by algae or microorganisms, the occurrence of odors derived from drinking water disinfection have attracted attention. The chlor(am)ination-derived odor substances have certain toxicity and odor-causing characteristics, and would enter the tap water through water distribution systems, directly affecting drinking water safety and customer experience. This study provided a comprehensive overview of the occurrence, detection, and control of odor substances derived from drinking water chlor(am)ination disinfection. The occurrence and formation mechanisms of several typical types of disinfection derived odor substances were summarized, including haloanisoles, N-chloroaldimines, iodotrihalomethanes, and halophenoles. They are mainly derived from specific precursors such as halophenols, anisoles, and amino acids species during the disinfection or distribution networks. In addition, the change of disinfectant during chlor(am)ination was also one of the causes of disinfection odors. Due to the extremely low odor threshold concentrations (OTCs) of these odor substances, the effective sample pre-enrichment for instrument identification and quantification are essential. The control strategies of odor problems mainly include adsorption, chemical oxidation, and combined processes such as ozonation and biological activated carbon processes (O3/BAC) and ultraviolet-based advanced oxidation processes (UV-AOPs). Finally, the challenges and possible future research directions in this research field were discussed and proposed.


Subject(s)
Disinfectants , Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Odorants , Water Pollutants, Chemical/analysis
8.
Sci Total Environ ; 779: 146340, 2021 Jul 20.
Article in English | MEDLINE | ID: mdl-33744578

ABSTRACT

A novel light source UV-C laser was applied in persulfate (PS) activation to effectively remove iodinated X-ray contrast medias (ICMs) including iohexol (IOX), iopamidol (IPM) and diatrizoate (DTZ) in this study. Significant ICMs degradation was observed in UV-C laser/PS systems with pseudo first-order rate constants of 0.022-0.067 s-1. Sulfate radicals (SO4•-) were the main active species in the three ICMs degradation, and the steady-state concentrations ([SO4•-]ss) were 3.629 × 10-11 M (IOX), 1.702 × 10-11 M (IPM) and 1.148 × 10-11 M (DTZ), respectively. Under the high intensity of UV-C laser, the optimal reaction efficiency was achieved at pH = 7.0 with PS concentration of 1.0 mM, and the degradation efficiency for IOX reached 93.8% within only 40 s. Both bicarbonate and chloride ions could inhibit the three ICMs degradation and the inhibition rate increased with the increase of ions concentration. The kinetic models were established and the steady-state concentrations of radicals were calculated. Density functional theory (DFT) calculations combined with experiments were used to derive the reaction pathways for three ICMs. Cyclic voltammetry measurements detected a lower redox potential peak in IOX degradation, revealing the existence of electron shuttles under the UV-C laser irradiation to promote the redox reaction. This study is the first report of UV-C laser activation of persulfate. It is a new advanced oxidation process mediated by very effective photolysis and active species formation.

9.
Water Res ; 193: 116851, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33540343

ABSTRACT

This study investigated the mechanisms of mixed IO3-/I- system under UV irradiation in drinking water and compared the iodinated trihalomethanes (I-THMs) formation of a mixed IO3-/I- system to that of single I- and IO3- systems during subsequent chloramination. The effects of initial I-/IO3- molar ratio, pH, and UV intensity on a mixed IO3-/I- system were studied. The introduction of I- enhanced the conversion rate of IO3- to reactive iodine species (RIS). Besides, IO3- degradation rate increased with the increase of initial I- concentration and UV intensity and the decrease of pH value. In a mixed IO3-/I- system, IO3- could undergo direct photolysis and photoreduction by hydrated electron (eaq-). Moreover, the enhancement of I-THM formation in a mixed IO3-/I- system during subsequent chloramination was observed. The I-THM yields in a mixed IO3-/I- system were higher than the sum of I-THMs produced in a single IO3- and I- systems at all the evaluated initial I- concentrations and pH values. The difference between I-THM formation in a mixed IO3-/I- system and the sum of I-THMs in a single IO3- and I- systems increased with the increase of initial I- concentration. As the initial pH decreased from 9 to 5, the difference of I-THM yields enhanced, while the total I-THM yield of a mixed IO3-/I- system and single I- and IO3- systems decreased slightly. Besides, IO3--I--containing water with DOC concentration of 2.5-4.5 mg-C/L, which mainly contained humic-acid substances, had a higher risk in I-THMs formation than individual I--containing and IO3--containing water.


Subject(s)
Water Pollutants, Chemical , Water Purification , Disinfection , Halogenation , Iodates , Iodides , Photolysis , Trihalomethanes/analysis , Water , Water Pollutants, Chemical/analysis
10.
RSC Adv ; 11(52): 33149-33159, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-35493592

ABSTRACT

In this study, molybdenum disulfide (MoS2) was chosen as a co-catalyst to enhance the removal efficiency of phenacetin (PNT) in water by a ferrous ion-activated peroxymonosulfate (Fe2+/PMS) process. Operating parameters, such as the initial solution pH and chemical dose on PNT degradation efficiency were investigated and optimized. Under an initial pH of 3, an Fe2+ dose of 25 µM, a PMS dose of 125 µM and a MoS2 dose of 0.1 g L-1, the degradation efficiency of PNT reached 94.3%, within 15 min. The presence of common water constituents including Cl-, HCO3 -, SO4 2- and natural organic matter (NOM) will inhibit degradation of PNT in the MoS2/Fe2+/PMS system. Radical quenching tests combined with electron paramagnetic resonance (EPR) results indicated that in addition to free radical species (˙OH, SO4˙- and O2˙-), nonradical reactive species (1O2) were also crucial for PNT degradation. The variations in the composition and crystalline structure of the MoS2 before and after the reaction were characterized by XPS and XRD. Further, the degradation pathways of PNT were proposed according to the combined results of LC/TOF/MS and DFT calculations, and primarily included hydroxylation of the aromatic ring, cleavage of the C-N bond of the acetyl-amino group, and cleavage of the C-O bond of the ethoxy group. Finally, toxicity assessment of PNT and its products was predicted using the ECOSAR program.

11.
Water Res ; 184: 116116, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32750585

ABSTRACT

The conversion mechanisms of chlorine species (including free chlorine, monochloramine (NH2Cl), dichloramine, and total chlorine), nitrogen species (including ammonium (NH4+), nitrate (NO3-), and nitrite (NO2-)) as well as the formation of disinfection by-products (DBPs) in a UV-activated mixed chlorine/chloramines system in water were investigated in this work. The consumption rates of free chlorine and NH2Cl were significantly promoted in a HOCl/NH2Cl coexisting system, especially in the presence of UV irradiation. Moreover, the transformation forms of nitrogen in both ultrapure and HA-containing waters were considerably affected by UV irradiation and the mass ratio of free chlorine to NH2Cl. NO3- and NO2- can be easily produced under UV irradiation, and the removal efficiency of total nitrogen with UV was obvious higher than that without UV when the initial ratio of HOCl/NH2Cl was less than 1. The roles of different radicals in the degradation of free chlorine, NH2Cl and NH4+ were also considered in such a UV-activated mixed chlorine/chloramines system. The results indicated that OH• was important to the consumption of free chlorine and NH2Cl, and showed negligible influence on the consumption of NH4+. Besides, the changes of DOC and UV254 in HA-containing water in UV-activated mixed chlorine/chloramines system indicated that the removal efficiency of DOC (24%) was much lower than that of UV254 (94%). The formation of DBPs in a mixed chlorine/chloramines system was also evaluated. The yields of DBPs decreased significantly as the mass ratio of HOCl/NH2Cl varied from 1 : 0 to 0 : 1. Moreover, compared to the conditions without UV irradiation, higher DBPs yields and DBP-associated calculated toxicity were observed during the UV-activated mixed chlorine/chloramine process.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chloramines , Chlorine , Disinfection , Halogenation , Nitrogen
12.
Water Res ; 182: 116035, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32574822

ABSTRACT

The effect of bromide and iodide on the transformation of humic acid (HA) and algal organic matter (AOM), and the formation of disinfection by-products (DBPs) during UV/chlorination were investigated. Experimental results indicated that the halides effectively inhibited mineralization, with multiple changes in organic molecule transformation due to differences in formation and speciation of reactive halogen species and free halogen. As a consequence, bromide and iodide also played important roles in DBP formation. The DBP yields in HA-containing water during UV/chlorination decreased in the order of iodide loaded > freshwater â‰« bromide loaded, whereas DBP formation in AOM-containing water decreased remarkably with halides added (freshwater > bromide loaded â‰« iodide loaded) at high UV fluence. Moreover, Pearson correlation analysis exhibited weaker correlation between DBPs and water parameters in AOM-containing water, while DBPs in HA-containing water exhibited better correlation with water parameters. For both simulated waters, the theoretical toxicity was calculated and peaked in bromide-containing water, whereas the calculated toxicity in iodide-containing water was comparable or slightly higher than that in freshwater. Therefore, UV/chlorine treatment may achieve good quality water with reduced DBP-associated toxicity in freshwater or iodide-containing water (iodide only), but careful consideration is needed when purifying source waters containing bromide (bromide only), especially for AOM/bromide-containing water.


Subject(s)
Disinfectants , Water Pollutants, Chemical/analysis , Water Purification , Bromides , Chlorine , Disinfection , Halogenation , Iodides
13.
RSC Adv ; 10(35): 20991-20999, 2020 May 27.
Article in English | MEDLINE | ID: mdl-35517766

ABSTRACT

In this study, nano zero-valent iron (nZVI) was utilized to activate persulfate (PS) for the degradation of metoprolol (MTP), a commonly used drug for curing cardiovascular diseases, in water. Quenching tests indicated that both the sulfate radical (SO4˙-) and hydroxyl radical (˙OH) contributed to the degradation of MTP, while SO4˙- seemed to play a large role under natural pH conditions. Batch tests were conducted to investigate the effects of several influencing factors, such as PS concentration, initial MTP concentration, pH, temperature and common anions, on the degradation performance of MTP. Generally, lower MTP concentration and pH values, and higher PS concentration and temperature favoured MTP degradation. HCO3 -, NO3 - and SO4 2- were found to inhibit MTP degradation, while Cl- enhanced MTP degradation. Several corrosion products of nZVI, including Fe3O4, Fe2O3 and FeSO4, were formed during the reaction, which was reflected by the combined XRD and XPS analysis. Degradation pathways of MTP were proposed according to the identified transformation products, and the peak areas of the major products along with the time were also monitored. Finally, the toxicity of the reaction solution was assessed by experiments using Aliivibrio fischeri. Overall, it could be concluded that nZVI/PS might be a promising method for the rapid treatment of MTP-caused water pollution.

14.
Chemosphere ; 240: 124761, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31546190

ABSTRACT

The formation and control of haloacetamides (HAcAms) in drinking water have raised high attention due to their high genotoxicity and cytotoxicity, especially the most cytotoxic one, diiodoacetamide (DIAcAm). In this study, the degradation of DIAcAm by UV/chlorination was investigated in terms of degradation kinetics, efficiency, influencing factors, oxidation products and toxicity evaluation. Results revealed that the degradation of DIAcAm by UV/chlorine process followed pseudo-first-order kinetics, and the rate constant between DIAcAm and OH radicals was determined as 2.8 × 109 M-1 s-1. The contribution of Cl to DIAcAm degradation by UV/chlorine oxidation was negligible. Increasing chlorine dosage and decreasing pH significantly promoted the DIAcAm degradation during UV/chlorine oxidation, but the presence of bicarbonate (HCO3-) and natural organic matter (NOM) inhibited it. The mass balance analysis of iodine species was also evaluated during UV/chlorine oxidation of DIAcAm. In this process, with DIAcAm decreasing from 16.0 to 0.8 µM-I in 20 min, IO3-, I- and HOI/I2 increased from 0 to 6.3, 6.1 and 0.5 µM-I, respectively. The increase of CHO cell viability during DIAcAm degradation indicated that the toxicity of DIAcAm could be decreased by chlorination, UV irradiation and UV/chlorine oxidation treatments, in which UV/chlorine oxidation was more effective on toxicity reduction than chlorination and UV irradiation alone.


Subject(s)
Acetamides/chemistry , Water Pollutants, Chemical/chemistry , Chlorine/analysis , Halogenation , Kinetics , Oxidation-Reduction , Ultraviolet Rays , Water , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity , Water Purification/methods
15.
J Hazard Mater ; 385: 121618, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31791866

ABSTRACT

With increasing shortage of clean water, rainwater has been considered as a precious alternative drinking water source. The processes applied to rainwater treatment are responsible for the safety of drinking water. Therefore, we systematically compared different disinfection processes to evaluate the control of disinfection by-product (DBP) formation and integrated cyto- and genotoxicity of the treated rainwater for the first time. The evaluated disinfection processes included chlorination and chloramination, pre-oxidation by potassium permanganate (KMnO4) and potassium ferrate (K2FeO4), ultraviolet/hydrogen peroxide (UV/H2O2), and ultraviolet/persulfate (UV/PS) processes. The results revealed that chloramination was effective for controlling the formation of carbonaceous DBPs (C-DBPs), but not nitrogenous DBPs (N-DBPs). Compared to KMnO4 pre-oxidation, better reduction of almost all DBPs was observed during K2FeO4 pre-oxidation. According to the calculation of cytotoxicity index (CTI) and genotoxicity index (GTI), cyto- and genotoxicity of the samples decreased obviously at the dosage of ≥ 2.0 mg/L KMnO4 and K2FeO4. The control of the cyto- and genotoxicity of the formed DBPs from the two UV-related AOPs was more effective at the dosage of ≥ 1.0 mM PS and ≥ 5.0 mM H2O2. Moreover, UV/PS was much more powerful to alter the structure of DBP precursors in rainwater.

16.
Chemosphere ; 243: 125325, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31733542

ABSTRACT

The degradation of metoprolol (MTP), a ß-blocker commonly used for cardiovascular diseases, by UV/chlorine and UV/H2O2 processes was comparatively evaluated. MTP direct photolysis at 254 nm could be neglected, but remarkable MTP degradation was observed in both the UV/chlorine and UV/H2O2 systems. Compared with UV/H2O2, UV/chlorine has a more pronounced MTP degradation efficiency. In addition to primary radicals (OH and Cl), secondary radicals (ClO and Cl2-) played a pivotal role in degrading MTP by UV/chlorine process. The relative contributions of hydroxyl radicals (OH) and reactive chlorine species (RCS) in the UV/chlorine system varied at different solution pH values (i.e., the contribution of RCS increased from 57.7% to 75.1% as the pH increased from 6 to 8). The degradation rate rose as the oxidant dosage increased in the UV/chlorine and UV/H2O2 processes. The presence of Cl- slightly affected MTP degradation in both processes, while the existence of HCO3- and HA inhibited MTP degradation to different extents in both processes. In terms of the overall cost of electrical energy, UV/chlorine is more cost efficient than UV/H2O2. The degradation products during the two processes were identified and compared, and the degradation pathways were proposed accordingly. Compared with the direct chlorination of MTP, pre-oxidation with UV/chlorine and UV/H2O2 significantly enhanced the formation of commonly known DBPs. Therefore, when using UV/chlorine and UV/H2O2 in real waters to remove organic pollutants, the possible risk of enhanced DBP formation resulting from the degradation of certain pollutants during post-chlorination should be carefully considered.


Subject(s)
Adrenergic beta-1 Receptor Antagonists/chemistry , Chlorine/chemistry , Hydrogen Peroxide/chemistry , Metoprolol/chemistry , Ultraviolet Rays , Chlorides , Halogenation , Hydroxyl Radical , Models, Chemical , Oxidation-Reduction , Photolysis , Water Purification/methods
17.
Sci Total Environ ; 702: 134942, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31710848

ABSTRACT

This study compared the degradation of dissolved organic matter (DOM) by UV/chlorine advanced oxidation processes (AOPs) with emerging ultraviolet light-emitting diode (UV-LED, 275 nm) and traditional low pressure UV (LPUV, 254 nm) as UV sources. Excitation emission matrix-parallel factor (EEM-PARAFAC) analysis and two-dimensional (2D) correlation gel permeation chromatograph were applied to explore the evolutions of DOM during oxidation processes. The degradation behaviors of DOM indicated by UV absorbance at 254 nm (UV254), dissolved organic carbon (DOC), and fluorophores fitted the pseudo-first-order kinetics well. The removal efficiency of DOM was similar under UV-LED and LPUV irradiation alone. However, UV-LED exhibited much higher degradation rates (increased by 29-160%) than LPUV regardless of the tracking variables during UV/chlorine processes. For three PARAFAC components, humic-like fluorescences were preferentially degraded by UV/chlorine oxidation compared with protein-like fluorescence potentially due to the differences of electronic moieties and molecular weight (MW). The decline in UV254, DOC, and fluorophores increased with increasing chlorine dosage; linear correlations between those indicators were observed during the two AOPs. Moreover, UV-LED/chlorine could achieve greater extents of MW change. Our study demonstrated that UV-LED could be a superior alternative for the future selection of UV source in the UV/chlorine process.

18.
Water Res ; 160: 296-303, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31154127

ABSTRACT

Ultraviolet light-emitting diodes (UV-LEDs) are promising alternatives to conventional low-pressure UV (LPUV) lamps, mainly because they contain no toxic mercury and have a potential for less energy consumption and longer lifetime. In this study, UV sources including UV-LEDs (265, 275 and 285 nm) and LPUV (254 nm) were compared in UV/chlorine degradation of an organic contaminant, ronidazole (RNZ). UV-LED/chlorine performed better than LPUV/chlorine at neutral and alkaline pH values for RNZ degradation considering the fluence-based rate constant. However, the wall plug efficiencies of UV-LEDs are relatively low at present and must reach about 20-25% to achieve the same electrical energy per order as the LPUV in UV/chlorine degradation of RNZ at pH 7.5 and 9. Neither the contribution of radical (HO· or Cl·) nor the quantum yield of chlorine could explain the different RNZ degradation rate by UV/chlorine at different wavelengths and pH values, while the chlorine photolysis rate should be the key factor for these phenomena. The effects of common co-existing substances in real water (chloride, bicarbonate and natural organic matter) on UV/chlorine degradation of RNZ were similar at different UV wavelengths. Opposite to other oxidants or reductants, the molar absorption coefficient of chlorine increases when the UV wavelength increases from 254 to 285 nm at neutral and alkaline pH, which makes UV-LED/chlorine one of the best choices for UV-LED-based advanced oxidation/reduction processes.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine , Hydrogen-Ion Concentration , Oxidation-Reduction , Ronidazole , Ultraviolet Rays
19.
Water Res ; 154: 199-209, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30798174

ABSTRACT

The efficiency of the ultraviolet (UV)/chlorine process strongly depends on UV wavelength because chlorine photolysis and its subsequent radical formation are highly wavelength-dependent. This study compared the degradation of humic acid (HA) during the UV/chlorine process by low pressure mercury lamp (LPUV, 254 nm) and ultraviolet light-emitting diode (UV-LED, 275 and 310 nm). The results indicated that HA degradation followed the pseudo-first-order kinetics, and the fluence-based degradation rate constants (kobs) were significantly affected by UV wavelength and solution pH. HA degradation decreased greatly with increasing solution pH during the UV/chlorine process at 254 nm, while the opposite trend was observed at 275 and 310 nm. In the meantime, kobs decreased in the order of 275 nm > 254 nm > 310 nm at pH > 7.0. The changes of chlorine molar absorption coefficients at different UV wavelengths resulted in the variation of chlorine photodecay rates (kobs, chlorine), and the synergistic effects of kobs, chlorine and chlorine quantum yields (Φchlorine) affected HA reduction. The formation of disinfection by-products (DBPs) during the UV/chlorine process was also evaluated. A significant suppression on DBP formation and DBP-associated calculated theoretical cytotoxicity were observed at 275 nm high UV fluence and alkaline pHs. These findings in this study demonstrate that UV wavelength at 275 nm is more suitable for HA degradation by the UV/chlorine advanced oxidation process in practical applications.


Subject(s)
Water Pollutants, Chemical , Water Purification , Chlorine , Disinfection , Humic Substances , Ultraviolet Rays
20.
Sci Total Environ ; 650(Pt 1): 210-215, 2019 Feb 10.
Article in English | MEDLINE | ID: mdl-30196221

ABSTRACT

Pulsed ultraviolet (UV) irradiation has presented enhanced inactivation efficiency in water disinfection and food decontamination. As an emerging UV source, UV light-emitting diodes (UV-LEDs) are an attractive alternative for pulsed irradiation because they can be turned on and off with a high and adjustable frequency. In this study, disinfection efficiencies of pulsed and continuous UV-LED irradiation were compared for Escherichia coli (E. coli) inactivation in water using a high power 285 nm LED and low power 265 and 280 nm LEDs. Factors including various duty cycles, pulse frequencies and UV irradiances were evaluated. The log-inactivation of E. coli increased substantially as the duty cycle decreased from 100% to 5% at the same UV dose. For 265 and 280 nm LEDs, the log-inactivation enhancements of pulsed UV irradiation were similar. When a higher irradiance was applied, the energy efficiency enhancement of pulsed UV irradiation became more obvious. The log-inactivation of E. coli enhanced remarkably using high current pulsed irradiation of 280 nm LEDs. Compared to continuous UV irradiation, pulsed UV-LED irradiation is an attractive alternative for E. coli inactivation in water considering energy efficiency.


Subject(s)
Disinfection/methods , Escherichia coli/radiation effects , Ultraviolet Rays , Water Microbiology , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...