Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(1): 13-18, 2024 Jan.
Article in Chinese | MEDLINE | ID: mdl-38246172

ABSTRACT

Objective To investigate the effect of interleukin-6 (IL-6) on the phagocytosis of MH-S alveolar macrophages and its related mechanisms. Methods A mouse acute lung injury (ALI) model was constructed by instilling lipopolysaccharide (LPS) into the airway. ELISA was used to detect the content of IL-6 in bronchoalveolar lavage fluid (BALF). In vitro cultured MH-S cells, in the presence or absence of signal transducer and activator 3 of transcription(STAT3) inhibitor Stattic (5 µmol/L), IL-6 (10 ng/mL~500 ng/mL) was added to stimulate for 6 hours, and then incubated with fluorescent microspheres for 2 hours. The phagocytosis of MH-S cells was detected by flow cytometry. Western blot analysis was used to detect the expression levels of phosphorylated Janus kinase 2 (p-JAK2), phosphorylated STAT3 (p-STAT3), actin-related protein 2 (Arp2) and filamentous actin (F-actin). Results The content of IL-6 in BALF was significantly increased after the mice were injected with LPS through the airway. With the increase of IL-6 stimulation concentration, the phagocytic function of MH-S cells was enhanced, and the expression levels of Arp2 and F-actin proteins in MH-S cells were increased. The expression levels of p-JAK2 and p-STAT3 proteins increased in MH-S cells stimulated with IL-6(100 ng/mL). After blocking STAT3 signaling, the effect of IL-6 in promoting phagocytosis of MH-S cells disappeared completely, and the increased expression of Arp2 and F-actin proteins in MH-S cells induced by IL-6 was also inhibited. Conclusion IL-6 promotes the expression of Arp2 and F-actin proteins by activating the JAK2/STAT3 signaling pathway, thereby enhancing the phagocytic function of MH-S cells.


Subject(s)
Interleukin-6 , Macrophages, Alveolar , Animals , Mice , Actins , Disease Models, Animal , Janus Kinase 2 , Lipopolysaccharides , Signal Transduction
2.
Article in English | MEDLINE | ID: mdl-37510558

ABSTRACT

Eating disorders (EDs) are characterized by severe disturbances in eating behaviors and can sometimes be fatal. Eating disorders are also associated with distressing thoughts and emotions. They can be severe conditions affecting physical, psychological, and social functions. Preoccupation with food, body weight, and shape may also play an important role in the regulation of eating disorders. Common eating disorders have three major types: anorexia nervosa (AN), bulimia nervosa (BN), and binge eating disorder (BED). In some cases, EDs can have serious consequences for an individual's physical and mental health. These disorders often develop during adolescence or early adulthood and affect both males and females, although they are more commonly diagnosed in young adult females. Treatment for EDs typically involves a combination of therapy, nutrition counseling, and medical care. In this narrative review, the authors summarized what is known of EDs and discussed the future directions that may be worth exploring in this emerging area.


Subject(s)
Anorexia Nervosa , Binge-Eating Disorder , Bulimia Nervosa , Feeding and Eating Disorders , Male , Female , Young Adult , Adolescent , Humans , Adult , Feeding and Eating Disorders/epidemiology , Feeding and Eating Disorders/therapy , Bulimia Nervosa/psychology , Binge-Eating Disorder/psychology , Body Weight
3.
J Clin Invest ; 133(14)2023 07 17.
Article in English | MEDLINE | ID: mdl-37261917

ABSTRACT

Glucose is the basic fuel essential for maintenance of viability and functionality of all cells. However, some neurons - namely, glucose-inhibited (GI) neurons - paradoxically increase their firing activity in low-glucose conditions and decrease that activity in high-glucose conditions. The ionic mechanisms mediating electric responses of GI neurons to glucose fluctuations remain unclear. Here, we showed that currents mediated by the anoctamin 4 (Ano4) channel are only detected in GI neurons in the ventromedial hypothalamic nucleus (VMH) and are functionally required for their activation in response to low glucose. Genetic disruption of the Ano4 gene in VMH neurons reduced blood glucose and impaired counterregulatory responses during hypoglycemia in mice. Activation of VMHAno4 neurons increased food intake and blood glucose, while chronic inhibition of VMHAno4 neurons ameliorated hyperglycemia in a type 1 diabetic mouse model. Finally, we showed that VMHAno4 neurons represent a unique orexigenic VMH population and transmit a positive valence, while stimulation of neurons that do not express Ano4 in the VMH (VMHnon-Ano4) suppress feeding and transmit a negative valence. Together, our results indicate that the Ano4 channel and VMHAno4 neurons are potential therapeutic targets for human diseases with abnormal feeding behavior or glucose imbalance.


Subject(s)
Glucose , Hypoglycemia , Animals , Mice , Anoctamins , Blood Glucose , Glucose/pharmacology , Hypoglycemia/genetics , Hypothalamus/metabolism , Neurons/metabolism , Ventromedial Hypothalamic Nucleus/metabolism
4.
Sci Adv ; 9(8): eabq6718, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36812308

ABSTRACT

Asprosin, a recently identified adipokine, activates agouti-related peptide (AgRP) neurons in the arcuate nucleus of the hypothalamus (ARH) via binding to protein tyrosine phosphatase receptor δ (Ptprd) to increase food intake. However, the intracellular mechanisms responsible for asprosin/Ptprd-mediated activation of AgRPARH neurons remain unknown. Here, we demonstrate that the small-conductance calcium-activated potassium (SK) channel is required for the stimulatory effects of asprosin/Ptprd on AgRPARH neurons. Specifically, we found that deficiency or elevation of circulating asprosin increased or decreased the SK current in AgRPARH neurons, respectively. AgRPARH-specific deletion of SK3 (an SK channel subtype highly expressed in AgRPARH neurons) blocked asprosin-induced AgRPARH activation and overeating. Furthermore, pharmacological blockade, genetic knockdown, or knockout of Ptprd abolished asprosin's effects on the SK current and AgRPARH neuronal activity. Therefore, our results demonstrated an essential asprosin-Ptprd-SK3 mechanism in asprosin-induced AgRPARH activation and hyperphagia, which is a potential therapeutic target for the treatment of obesity.


Subject(s)
Arcuate Nucleus of Hypothalamus , Obesity , Humans , Agouti-Related Protein/genetics , Agouti-Related Protein/metabolism , Agouti-Related Protein/pharmacology , Arcuate Nucleus of Hypothalamus/metabolism , Hypothalamus/metabolism , Neurons/metabolism , Obesity/metabolism , Adipokines/metabolism , Fibrillin-1/metabolism
5.
West J Nurs Res ; 45(6): 491-498, 2023 06.
Article in English | MEDLINE | ID: mdl-36717969

ABSTRACT

The purpose of this study was to explore the relationship among unmet care needs, social support, and anxiety in patients with lung transplantation. We conducted a cross-sectional study; 173 lung transplant patients who met the inclusion criteria completed questionnaires including the Organ Transplant Recipient Care Needs Scale, the Perceived Social Support Scale, and the Anxiety Self-Rating Inventory. Pearson's correlations and multiple linear regression analyses were used to test the relationship between the selected variables. The results showed a moderate level of unmet care needs at home for lung transplant patients. Education level, transplant-related complications, perceived social support, and anxiety were significantly correlated with unmet care needs of lung transplant patients at home (p < .05), explaining 23.8% of the total variance for unmet care needs. Further research is required to explore interventions to reduce the level of unmet care needs of lung transplant patients.


Subject(s)
Anxiety , Depression , Humans , Cross-Sectional Studies , Depression/etiology , Anxiety Disorders , Needs Assessment , Social Support , Surveys and Questionnaires
6.
Oncol Lett ; 22(4): 706, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34457061

ABSTRACT

Over the past few decades, increasing efforts have been made to improve the understanding of, and treatment options for, lung adenocarcinoma (LUAD). However, considering the heterogeneity of LUAD, precise proteomics-based characterization at the molecular level is an urgent clinical requirement for effective treatment. Formalin-fixed, paraffin-embedded (FFPE) tissue is a good option as the working tool for proteomics studies. The present study aimed to obtain a global protein profile using LUAD FFPE tissue samples. Using a quantitative proteomics approach, the study revealed that 360 proteins were significantly more highly expressed in LUAD than in adjacent nontumor lung tissues. Also, 19 differentially expressed membrane proteins were found to be primarily responsible for immune processes. Epidermal growth factor (EGF)-like domain and laminin EGF domain showed markedly different expression levels between cancer tissues and tumor-adjacent normal tissues. Furthermore, Gene Ontology functional enrichment analysis showed that significantly upregulated proteins were associated with the endoplasmic reticulum lumen, protein disulfide isomerase activity, vitamin binding, cell cycle G1/S phase transition, to name but a few. Also, numerous kinases and post-translational modification enzymes were significantly upregulated across all eight LUAD samples compared with paracarcinoma tissues. Proteomics analysis revealed that AAA domain containing 3A (ATAD3a), a member of the ATPase family, was highly expressed in LUAD tissues, which was supported by immunohistochemical analysis. Furthermore, the study confirmed that ATAD3a enhanced the cisplatin sensitivity of LUAD cells. Collectively, the findings of the present study provide new potential candidate targets in patients with LUAD, and may aid auxiliary LUAD diagnosis and surveillance in a noninvasive manner.

8.
Biomed Res Int ; 2020: 5287131, 2020.
Article in English | MEDLINE | ID: mdl-32879883

ABSTRACT

Professional phagocytes such as dendritic cells and macrophages can ingest particles larger than 0.5 µm in diameter. Epithelial cells are nonprofessional phagocytes that cannot ingest pathogenic microorganisms, but they can ingest apoptotic cells. Inhibition of the engulfment of apoptotic cells by the airway epithelium can cause severe airway inflammation. Vascular endothelial growth factor (VEGF) is an angiogenesis-promoting factor that can mediate allergic airway inflammation and can promote airway epithelial cells (AECs) proliferation, but it is not clear whether it affects the engulfment of apoptotic cells by AECs. In the present study, VEGF inhibited engulfment of apoptotic cells by AECs via binding to VEGF receptor(R)2. This inhibitory effect of VEGF was not influenced by masking of phosphatidylserine (PS) on the surface of apoptotic cells and was partially mediated by the PI3K-Akt signaling pathway. VEGF inhibition of phagocytosis involved polymerization of actin and downregulation of the expression of the phagocytic-associated protein Beclin-1 in AECs. Since engulfment of apoptotic cells by AECs is an important mechanism for airway inflammation regression, VEGF inhibition of the engulfment of apoptotic cells by airway epithelial cells may be important for mediating allergic airway inflammation.


Subject(s)
Apoptosis/drug effects , Phagocytosis/drug effects , Vascular Endothelial Growth Factor A/pharmacology , Actins/metabolism , Animals , Apoptosis/physiology , Beclin-1/metabolism , Cells, Cultured , Epithelial Cells , Lung/cytology , Mice, Inbred BALB C , Phagocytosis/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylserines/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Vascular Endothelial Growth Factor Receptor-2/metabolism
9.
Front Immunol ; 11: 1585, 2020.
Article in English | MEDLINE | ID: mdl-32793225

ABSTRACT

To maintain alveolar gas exchange, the alveolar surface has to limit unnecessary inflammatory responses. This involves crosstalk between alveolar epithelial cells (AECs) and alveolar macrophages (AMs) in response to damaging factors. We recently showed that insulin-like growth factor (IGF)-1 regulates the phagocytosis of AECs. AMs secrete IGF-1 into the bronchoalveolar lavage fluid (BALF) in response to inflammatory stimuli. However, whether AECs regulate the production of IGF-1 by AMs in response to inflammatory signals remains unclear, as well as the role of IGF-1 in controlling the alveolar balance in the crosstalk between AMs and AECs under inflammatory conditions. In this study, we demonstrated that IGF-1 was upregulated in BALF and lung tissues of acute lung injury (ALI) mice, and that the increased IGF-1 was mainly derived from AMs. In vitro experiments showed that the production and secretion of IGF-1 by AMs as well as the expression of TGF-ß were increased in LPS-stimulated AEC-conditioned medium (AEC-CM). Pharmacological blocking of TGF-ß in AECs and addition of TGF-ß neutralizing antibody to AEC-CM suggested that this AEC-derived cytokine mediates the increased production and secretion of IGF-1 from AMs. Blocking TGF-ß synthesis or treatment with TGF-ß neutralizing antibody attenuated the increase of IGF-1 in BALF in ALI mice. TGF-ß induced the production of IGF-1 by AMs through the PI3K/Akt signaling pathway. IGF-1 prevented LPS-induced p38 MAPK activation and the expression of the inflammatory factors MCP-1, TNF-α, and IL-1ß in AECs. However, IGF-1 upregulated PPARγ to increase the phagocytosis of apoptotic cells by AECs. Intratracheal instillation of IGF-1 decreased the number of polymorphonuclear neutrophils in BALF of ALI model mice, reduced alveolar congestion and edema, and suppressed inflammatory cell infiltration in lung tissues. These results elucidated a mechanism by which AECs used TGF-ß to regulate IGF-1 production from AMs to attenuate endogenous inflammatory signals during alveolar inflammation.


Subject(s)
Alveolar Epithelial Cells/metabolism , Insulin-Like Growth Factor I/biosynthesis , Macrophages, Alveolar/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Animals , Apoptosis/immunology , Cell Communication , Disease Models, Animal , Lipopolysaccharides/adverse effects , Lipopolysaccharides/immunology , Macrophage Activation/immunology , Macrophages, Alveolar/immunology , Mice , Phagocytosis/immunology , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/etiology , Pneumonia/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference
10.
Immunol Lett ; 225: 44-49, 2020 09.
Article in English | MEDLINE | ID: mdl-32554050

ABSTRACT

Cells engulf particles larger than 0.5 µm in diameter by phagocytosis, which is driven by cytoskeletal rearrangements. Phagocytosis by alveolar epithelial cells (AECs) helps to maintain the alveolar homeostasis. Yes-associated protein (YAP), a transcriptional coactivator of the Hippo pathway, affects proliferation, differentiation, and cytoskeletal rearrangement of AECs, but it is not clear whether YAP regulates phagocytosis. In this study, interference with YAP expression inhibited phagocytosis in MLE-12 cells and in primary cultures of AEC. Filopodia formation promoted phagocytosis in AECs, and YAP enhanced filopodia formation in AECs. Blocking PI3K signaling resulted in reduced YAP protein expression and inhibition of phagocytosis. The results indicate that YAP expression was regulated by PI3K signaling and promoted phagocytosis in AECs by upregulating filopodia formation.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Epithelial Cells/metabolism , Pseudopodia/ultrastructure , Pulmonary Alveoli/pathology , Actins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line , Epithelial Cells/ultrastructure , Homeostasis , Mice , Mice, Inbred BALB C , Phagocytosis , YAP-Signaling Proteins
11.
Nan Fang Yi Ke Da Xue Xue Bao ; 40(3): 376-381, 2020 Mar 30.
Article in Chinese | MEDLINE | ID: mdl-32376590

ABSTRACT

OBJECTIVE: To investigate the changes in phagocytic function of alveolar macrophages (AMs) in mice with lipopolysaccharide (LPS)-induced acute lung injury (ALI) and explore the possible mechanism. METHODS: Kunming mice were randomly divided into normal control group and ALI (induced by LPS instillation in the airway) model group. AMs were obtained from bronchoalveolar lavage fluid in both groups, and phagocytosis of the AMs was observed using flow cytometry and fluorescence microscopy. Western blotting and ELISA were used to detect the expression and secretion of IL-33 in the lung tissue of the mice. We also detected the secretion of IL-33 by an alveolar epithelial cell line MLE-12 in response to stimulation with different concentrations of LPS. The AMs from the normal control mice were treated with different concentrations of LPS and IL-33, and the changes in the phagocytic activity of the cells were observed. RESULTS: Compared with those in normal control group, the percentage of AMs phagocytosing fluorescent microspheres was significantly decreased, and the expression of IL-33 in lung tissue and IL-33 level in the bronchoalveolar lavage fluid were significantly increased in ALI mice (P < 0.01). LPS (100-1000 ng/mL) obviously promoted the secretion of IL-33 in cultured MLE-12 cells (P < 0.01). Both LPS (10-500 ng/mL) and IL-33 (100 ng/mL) significantly inhibited the phagocytic activity of the AMs from normal control mice (P < 0.01). CONCLUSIONS: The phagocytic activity of AMs is weakened in ALI mice possibly due to direct LPS stimulation and the inhibitory effect of the alarmin IL-33 produced by LPS-stimulated alveolar epithelial cells.


Subject(s)
Acute Lung Injury , Macrophages, Alveolar , Acute Lung Injury/chemically induced , Animals , Lipopolysaccharides , Lung , Mice , Phagocytosis
SELECTION OF CITATIONS
SEARCH DETAIL
...