Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.055
Filter
1.
J Hepatol ; 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759889

ABSTRACT

BACKGROUND & AIMS: The liver is the main organ of ketogenesis, while ketones are mainly metabolized in peripheral tissues via the critical enzyme OXCT1. We previously found that ketolysis is reactivated in hepatocellular carcinoma (HCC) cells through OXCT1 expression to promote tumor progression; however, whether OXCT1 regulates antitumor immunity remains unclear. METHODS: To investigate the expression pattern of OXCT1 in hepatocellular carcinoma in vivo, we conducted multiplex immunohistochemistry (mIHC) experiments on human HCC specimens. To explore the role of OXCT1 in mouse hepatocellular carcinoma tumor-associated macrophages (TAMs), we generated LysMcreOXCT1f/f (OXCT1 conditional knockout in macrophages) mice. RESULTS: Here, we found that inhibiting OXCT1 expression in tumor-associated macrophages reduced CD8+ T-cell exhaustion through the succinate-H3K4me3-Arg1 axis. Initially, we found that OXCT1 was highly expressed in liver macrophages under steady state and that OXCT expression was further increased in TAMs. OXCT1 deficiency in macrophages suppressed tumor growth by reprogramming TAMs toward an antitumor phenotype, reducing CD8+ T-cell exhaustion and increasing CD8+ T-cell cytotoxicity. Mechanistically, high OXCT1 expression induced the accumulation of succinate, a byproduct of ketolysis, in TAMs, which promoted Arg1 transcription by increasing the H3K4 trimethylation (H3K4me3) level in the Arg1 promoter. In addition, Pimozide, an inhibitor of OXCT1, suppressed Arg1 expression as well as TAM polarization toward the protumor phenotype, leading to decreasing CD8+ T-cell exhaustion and deceleration of tumor growth. Finally, high expression of OXCT1 in macrophages was positively associated with poor survival in HCC patients. CONCLUSIONS: In conclusion, our results demonstrate that OXCT1 epigenetically suppresses antitumor immunity, suggesting that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer. IMPACT AND IMPLICATIONS: The intricate metabolism of liver macrophages plays a critical role in shaping HCC progression and immune modulation. Targeting macrophage metabolism to counteract immune suppression presents a promising avenue for HCC. Here, we found that ketogenesis gene OXCT1 was highly expressed in tumor-associated macrophages and promoted tumor growth by reprogramming TAMs toward a protumor phenotype. And the strategic pharmacological intervention or genetic downregulation of OXCT1 in TAMs enhances the antitumor immunity and decelerated tumor growth. Our results suggest that suppressing OXCT1 activity in TAMs is an effective approach for treating liver cancer.

2.
Cell Biosci ; 14(1): 62, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750565

ABSTRACT

BACKGROUND: Gut microbiota and their metabolites play a regulatory role in skeletal muscle growth and development, which be known as gut-muscle axis. 3-phenylpropionic acid (3-PPA), a metabolite produced by colonic microorganisms from phenylalanine in the gut, presents in large quantities in the blood circulation. But few study revealed its function in skeletal muscle development. RESULTS: Here, we demonstrated the beneficial effects of 3-PPA on muscle mass increase and myotubes hypertrophy both in vivo and vitro. Further, we discovered the 3-PPA effectively inhibited protein degradation and promoted protein acetylation in C2C12 and chick embryo primary skeletal muscle myotubes. Mechanistically, we supported that 3-PPA reduced NAD+ synthesis and subsequently suppressed tricarboxylic acid cycle and the mRNA expression of SIRT1/3, thus promoting the acetylation of total protein and Foxo3. Moreover, 3-PPA may inhibit Foxo3 activity by directly binding. CONCLUSIONS: This study firstly revealed the effect of 3-PPA on skeletal muscle growth and development, and newly discovered the interaction between 3-PPA and Foxo3/NAD+ which mechanically promote myotubes hypertrophy. These results expand new understanding for the regulation of gut microbiota metabolites on skeletal muscle growth and development.

3.
J Biopharm Stat ; : 1-23, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704845

ABSTRACT

We propose an adaptive sequential testing procedure for the selection and testing of multiple treatment options, such as dose/regimen, different drugs, sub-populations, endpoints, or a mixture of them in a seamlessly combined phase II/III trial. The selection is to be made at the end of phase 2 stage. Unlike in many of the published literature, the selection rule is not required to be to "select the best", and does not need to be pre-specified, which provides flexibility and allows the trial investigators to use any efficacy and safety information/criteria, or surrogate or intermediate endpoint to make the selection. Sample size and power calculations are provided. The calculations have been confirmed to be accurate by simulations. Interim analysis can be performed after the selection, sample size can be modified if the observed efficacy deviates from the assumed. Inference after the trial, including p-value, median unbiased point estimate and confidence intervals, are provided. By applying a dominance theorem, the procedure can be applied to normal, binary, Poisson, negative binomial distributed endpoints and time-to-event endpoints, and a mixture of these distributions (in trials involving endpoint selection).

4.
Talanta ; 274: 126006, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38569371

ABSTRACT

This study proposes an efficient method for monitoring the submerged fermentation process of Tremella fuciformis (T. fuciformis) by integrating electronic nose (e-nose), electronic tongue (e-tongue), and colorimeter sensors using a data fusion strategy. Chemometrics was employed to establish qualitative identification and quantitative prediction models. The Pearson correlation analysis was applied to extract features from the e-nose and tongue sensor arrays. The optimal sensor arrays for monitoring the submerged fermentation process of T. fuciformis were obtained, and four different data fusion methods were developed by incorporating the colorimeter data features. To achieve qualitative identification, the physicochemical data and principal component analysis (PCA) results were utilized to determine three stages of the fermentation process. The fusion signal based on full features proved to be the optimal data fusion method, exhibiting the highest accuracy across different models. Notably, random forest (RF) was shown to be the most accurate pattern recognition method in this paper. For quantitative prediction, partial least squares regression (PLSR) and support vector regression (SVR) were employed to predict the sugar content and dry cell weight during fermentation. The best respective predictive R2 values for reducing sugar, tremella polysaccharide and dry cell weight were found to be 0.965, 0.988, and 0.970. Furthermore, due to its ability to capture nonlinear data relationships, SVR had superior performance in prediction modeling than PLSR. The results demonstrated that the combination of electronic sensor fusion signals and chemometrics provided a promising method for effectively monitoring T. fuciformis fermentation.


Subject(s)
Basidiomycota , Colorimetry , Electronic Nose , Fermentation , Basidiomycota/metabolism , Colorimetry/methods , Chemometrics/methods , Principal Component Analysis , Least-Squares Analysis
5.
Sci Total Environ ; 928: 172361, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38614339

ABSTRACT

The development of advanced biosensors for tracking chemical residues and detecting environmental pollution is of great significance. Insect chemical sensory proteins, including chemosensory proteins (CSPs), are easy to synthesize and purify and have been used to design proteins for specific biosensor applications. Chlorpyrifos is one of the most commonly used chemicals for controlling insect pests in agriculture. This organophosphate is harmful to aquatic species and has long-term negative consequences for the ecosystem. CSPs can bind and carry a variety of environmental chemicals, including insecticides. However, the mechanism by which CSPs bind to insecticides in aphids has not been clarified. In this study, we discovered that RpCSP1 from Rhopalosiphum padi has a higher affinity for chlorpyrifos, with a Ki value of 4.763 ± 0.491 µM. Multispectral analysis revealed the physicochemical binding mechanism between RpCSP1 and chlorpyrifos. Computational simulation analysis demonstrated that the main factor promoting the development of the RpCSP1-chlorpyrifos complex is polar solvation energy. Four residues (Arg33, Glu94, Gln145, Lys153) were essential in facilitating the interaction between RpCSP1 and chlorpyrifos. Our research has improved knowledge of the relationship between CSPs and organophosphorus pesticides. This knowledge contributes to the advancement of biosensor chips for tracking chemical residues and detecting environmental pollution through the use of CSPs.


Subject(s)
Chlorpyrifos , Insect Proteins , Insecticides , Chlorpyrifos/metabolism , Chlorpyrifos/analysis , Animals , Insecticides/metabolism , Insect Proteins/metabolism , Aphids , Environmental Monitoring/methods , Receptors, Odorant/metabolism , Biosensing Techniques , Pesticide Residues/analysis
6.
Biochem Biophys Res Commun ; 715: 149999, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38678787

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD), a chronic liver condition and metabolic disorder, has emerged as a significant health issue worldwide. D-mannose, a natural monosaccharide widely existing in plants and animals, has demonstrated metabolic regulatory properties. However, the effect and mechanism by which D-mannose may counteract NAFLD have not been studied. In this study, network pharmacology followed by molecular docking analysis was utilized to identify potential targets of mannose against NAFLD, and the leptin receptor-deficient, genetically obese db/db mice was employed as an animal model of NAFLD to validate the regulation of D-mannose on core targets. As a result, 67 targets of mannose are predicted associated with NAFLD, which are surprisingly centered on the mechanistic target of rapamycin (mTOR). Further analyses suggest that mTOR signaling is functionally enriched in potential targets of mannose treating NAFLD, and that mannose putatively binds to mTOR as a core mechanism. Expectedly, repeated oral gavage of supraphysiological D-mannose ameliorates liver steatosis of db/db mice, which is based on suppression of hepatic mTOR signaling. Moreover, daily D-mannose administration reduced hepatic expression of lipogenic regulatory genes in counteracting NAFLD. Together, these findings reveal D-mannose as an effective and potential NAFLD therapeutic through mTOR suppression, which holds translational promise.


Subject(s)
Mannose , Network Pharmacology , Non-alcoholic Fatty Liver Disease , TOR Serine-Threonine Kinases , Animals , Mannose/pharmacology , Mannose/metabolism , TOR Serine-Threonine Kinases/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Mice , Male , Molecular Docking Simulation , Mice, Inbred C57BL , Signal Transduction/drug effects , Liver/metabolism , Liver/drug effects
7.
J Pharm Biomed Anal ; 245: 116153, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38636194

ABSTRACT

Extracellular vesicles (EVs) are nano-sized lipid-membrane vesicles involved in intercellular communication and reflecting the physiological and pathological processes of their parental cells. Rapid isolation of EVs with low cost is an essential precondition for downstream function exploration and clinical applications. In this work, we designed a novel EVs isolation device based on the boronated organic framework (BOF) coated recyclable microfluidic chip (named EVs-BD) to separate EVs from cell culture media. Using a reactive oxygen species responsive phenylboronic ester compound, the highly porous BOF with a pore size in the range of 10-300 nm was prepared by crosslinking γ-cyclodextrin metal-organic frameworks. A mussel-inspired polydopamine (PDA)/polyethyleneimine (PEI) coating was employed to pattern BOF on the PDMS substrate of microfluidic channels. The EVs-BD was demonstrated to offer distinct advantages over the traditional ultracentrifugation method, such as operation simplicity and safety, reduced time and expense, and low expertize requirements. All things considered, a novel approach of EV acquisition has been successfully developed, which can be customized easily to meet the requirements of various EV-relevant research.


Subject(s)
Extracellular Vesicles , Indoles , Metal-Organic Frameworks , Polyethyleneimine , Polymers , Extracellular Vesicles/chemistry , Metal-Organic Frameworks/chemistry , Polymers/chemistry , Indoles/chemistry , Polyethyleneimine/chemistry , Humans , Microfluidic Analytical Techniques/methods , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Reactive Oxygen Species/metabolism
8.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38618651

ABSTRACT

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Subject(s)
CD36 Antigens , Chylomicrons , Diet, High-Fat , Linoleic Acids, Conjugated , MAP Kinase Signaling System , Mice, Inbred C57BL , Animals , CD36 Antigens/metabolism , CD36 Antigens/genetics , Linoleic Acids, Conjugated/pharmacology , Mice , Male , Chylomicrons/metabolism , MAP Kinase Signaling System/drug effects , Diet, High-Fat/adverse effects , Fatty Acids/metabolism , Acyltransferases/metabolism , Acyltransferases/genetics , Intestinal Absorption/drug effects
9.
Environ Sci Pollut Res Int ; 31(22): 33047-33057, 2024 May.
Article in English | MEDLINE | ID: mdl-38668948

ABSTRACT

During the COVID-19 pandemic, a substantial quantity of disposable face masks was discarded, consisting of three layers of nonwoven fabric. However, their improper disposal led to the release of microplastics (MPs) and nanoplastics (NPs) when they ended up in aquatic environments. To analyze the release kinetics and size characteristics of these masks, release experiments were performed on commercially available disposable masks over a period of 7 days and micro- and nanoplastic releases were detected using fiber counting and nanoparticle tracking analysis. The study's findings revealed that there was no significant difference (p > 0.05) in the quantity of MPs released among the layers of the masks. However, the quantity of NPs released from the middle layer of the mask was 25.9 ± 1.3 × 108 to 81.3 ± 5.3 × 108 particles/piece, significantly higher than the inner and outer layers (p < 0.05). The release process of micro/nanoplastics (M/NPs) from each layer of the mask followed the Elovich equation and the power function equation, indicating that the release was divided into two stages. MPs in the range of 1-500 µm and NPs in the range of 100-300 nm dominated the release from each layer of the mask, accounting for an average of 93.81% and 67.52%, respectively. Based on these findings, recommendations are proposed to reduce the release of M/NPs from masks during subsequent use.


Subject(s)
COVID-19 , Masks , Microplastics , Plastics , Microplastics/analysis , COVID-19/prevention & control , Humans , Water Pollutants, Chemical/analysis , SARS-CoV-2 , Nanoparticles/chemistry
10.
Int J Impot Res ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653801

ABSTRACT

Visceral adipose tissue (VAT) is regarded as an important risk factor for obesity-related diseases. The results of the association between VAT and total testosterone (TT) are controversial and whether this association is nonlinear is still unknown. 3971 male participants who were aged 20-59 years from the National Health and Nutrition Examination Surveys 2011-2016 were included. VAT area was measured by dual-energy x-ray absorptiometry. TT in serum was assessed utilizing the isotope dilution liquid chromatography-tandem mass spectrometry technique. Linear regression models assessed the associations between VAT area and TT. A restricted cubic spline model was employed to investigate nonlinear relationships. A two-piecewise linear regression model was applied to determine the threshold effect. Subgroup analyses were conducted. The weighted methods were utilized in all analyses. VAT area was inversely associated with TT in the crude and adjusted models. In the fully adjusted model, VAT area was associated with TT (ß = -0.59, 95% confidence interval [CI] = -0.74, -0.43) and compared to the first tertile of VAT area, the second and the third tertile had a lower TT level, the ß and 95% CI = -65.49 (-83.72, -47.25) and -97.57 (-121.86, -73.27) respectively. We found these inverse associations were nonlinear. The cutoff point of the VAT area was 126 cm2. When the VAT area was <126 cm2, VAT area was significantly associated with a lower TT level (ß = -1.55, 95% CI = -1.93 to -1.17, p < 0.0001). However, when the VAT area was ≥126 cm2, this association was less apparent (ß = -0.26, 95% CI = -0.52 to 0.01, p = 0.06). No significant interactions among different ages (<50 or ≥50 years), marital, and physical activity status were found. These findings underscore the potential for VAT area as a modifiable indicator for improving testosterone deficiency.

11.
iScience ; 27(4): 109518, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38585662

ABSTRACT

Herbivorous insects have evolved metabolic strategies to survive the challenges posed by plant secondary metabolites (SMs). This study reports an exploration of SMs present in pears, which serve as a defense against invasive Cydia pomonella and native Grapholita molesta and their counter-defense response. The feeding preferences of fruit borers are influenced by the softening of two pear varieties as they ripen. The content of SMs, such as quercetin and rutin, increases due to feeding by fruit borers. Notably, quercetin levels only increase after C. pomonella feeding. The consumption of SMs affects the growth of fruit borer population differently, potentially due to the activation of P450 genes by SMs. These two fruit borers are equipped with specific P450 enzymes that specialize in metabolizing quercetin and rutin, enabling them to adapt to these SMs in their host fruits. These findings provide valuable insights into the coevolution of plants and herbivorous insects.

12.
J Biopharm Stat ; : 1-15, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38619921

ABSTRACT

Single-arm phase II trials are very common in oncology. A fixed sample trial may lack sufficient power if the true efficacy is less than the assumed one. Adaptive designs have been proposed in the literature. We propose a Simon's design based, adaptive sequential design. Simon's design is the most used fixed sample design for single-arm phase II oncology trials. A prominent feature of Simon's design is that it minimizes the sample size when there is no clinically meaningful efficacy. We identify Simon's trial as a special group sequential design. Established methods for sample size re-estimation (SSR) can be readily applied to Simon's design. Simulations show that simply adding SSR to Simon's design may still not provide desirable power. We propose some expansions to Simon's design. The expanded design with SSR can provide even more power.

13.
Small ; : e2400315, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38488741

ABSTRACT

Currently, a major target in the development of Na-ion batteries is the concurrent attainment of high-rate capacity and long cycling stability. Herein, an advanced Na-ion battery with high-rate capability and long cycle stability based on Li/Ti co-doped P2-type Na0.67 Mn0.67 Ni0.33 O2 , a host material with high-voltage zero-phase transition behavior and fast Na+ migration/conductivity during dynamic de-embedding process, is constructed. Experimental results and theoretical calculations reveal that the two-element doping strategy promotes a mutually reinforcing effect, which greatly facilitates the transfer capability of Na+ . The cation Ti4+ doping is a dominant high voltage, significantly elevating the operation voltage to 4.4 V. Meanwhile, doping Li+ shows the function in charge transfer, improving the rate performance and prolonging cycling lifespan. Consequently, the designed P2-Na0.75 Mn0.54 Ni0.27 Li0.14 Ti0.05 O2 cathode material exhibits discharge capacities of 129, 104, and 85 mAh g- 1 under high voltage of 4.4 V at 1, 10, and 20 C, respectively. More importantly, the full-cell delivers a high initial capacity of 198 mAh g-1 at 0.1 C (17.3 mA g-1 ) and a capacity retention of 73% at 5 C (865 mA g-1 ) after 1000 cycles, which is seldom witnessed in previous reports, emphasizing their potential applications in advanced energy storage.

14.
J Agric Food Chem ; 72(10): 5165-5175, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38437009

ABSTRACT

Uridine diphosphate-glycosyltransferase (UGT) is a key phase II enzyme in the insect detoxification system. Pyrethroids are commonly used to control the destructive wheat aphid Rhopalosiphum padi. In this study, we found a highly expressed UGT gene, RpUGT344D38, in both λ-cyhalothrin (LCR)- and bifenthrin (BTR)-resistant strains of R. padi. After exposure to λ-cyhalothrin and bifenthrin, the expression levels of RpUGT344D38 were significantly increased in the resistant strains. Knockdown of RpUGT344D38 did not affect the resistance of BTR, but it did significantly increase the susceptibility of LCR aphids to λ-cyhalothrin. Molecular docking analysis demonstrated that RpUGT344D38 had a stable binding interaction with both bifenthrin and λ-cyhalothrin. The recombinant RpUGT344D38 was able to metabolize 50% of λ-cyhalothrin. This study provides a comprehensive analysis of the role of RpUGT344D38 in the resistance of R. padi to bifenthrin and λ-cyhalothrin, contributing to a better understanding of aphid resistance to pyrethroids.


Subject(s)
Aphids , Insecticides , Nitriles , Pyrethrins , Animals , Molecular Docking Simulation
15.
Int J Biol Macromol ; 264(Pt 2): 130782, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471613

ABSTRACT

Vascular endothelial growth factor B (VEGFB) has been well demonstrated to play a crucial role in regulating vascular function by binding to the VEGF receptors (VEGFRs). However, the specific role of VEGFB and VEGFRs in pubertal mammary gland development remains unclear. In this study, we observed that blocking the VEGF receptors with Axitinib suppressed the pubertal mammary gland development. Meanwhile, the proliferation of mammary epithelial cells (HC11) was repressed by blocking the VEGF receptors with Axitinib. Additionally, knockdown of VEGFR1 rather than VEGFR2 and NRP1 elicited the inhibition of HC11 proliferation, suggesting the essential role of VEGFR1 during this process. Furthermore, Axitinib or VEGFR1 knockdown led to the inhibition of the PI3K/Akt pathway. However, the inhibition of HC11 proliferation induced by Axitinib and or VEGFR1 knockdown was eliminated by the Akt activator SC79, indicating the involvement of the PI3K/Akt pathway. Finally, the knockdown of VEGFB and VEGFR1 suppressed the pubertal development of mice mammary gland with the inhibition of the PI3K/Akt pathway. In summary, the results showed that knockdown of the VEGFB/VEGFR1 signaling suppresses pubertal mammary gland development of mice via the inhibition of the PI3K/Akt pathway, which provides a new target for the regulation of pubertal mammary gland development.


Subject(s)
Proto-Oncogene Proteins c-akt , Vascular Endothelial Growth Factor B , Animals , Mice , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Axitinib/pharmacology , Receptors, Vascular Endothelial Growth Factor , Cell Proliferation
16.
Int Immunopharmacol ; 131: 111862, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38513574

ABSTRACT

Astragaloside IV(ASⅣ), the main component of Radix Astragali, has been used to treat cerebral ischemia reperfusion injury (CIRI). However, the molecular mechanism of ASIV in CIRI needs to be further elucidated. Long non-coding RNA (lncRNA) is considered to be an important kind of regulatory molecule in CIRI. In this work, the biological effect and molecular mechanism of ASIV in CIRI through lncRNA were analyzed by using rat middle cerebral artery occlusion and reperfusion (MCAO/R) model and primary rat microglia (RM) cells oxygen and glucose deprivation/reoxygenation (OGD/R) model. The neurological deficit score was evaluated, the volume of cerebral infarction was calculated, and pyroptosis related molecules were detected by qPCR and western blot. Then, high-throughput sequencing was performed in sham and MCAO/R groups. The competitive endogenous RNA (ceRNA) networks associated with pyroptosis were constructed by functional enrichment analysis. CCK-8 detection of cell survival rate, qPCR and western blot were used to determine the specific molecular mechanism of ASⅣ through ceRNA in vitro. Results showed thatASⅣ could decrease the neurological deficit score, reduce the volume of cerebral infarction, inhibit inflammatory reaction and pyroptosis in MCAO/R model rats. Next, the ceRNA network was established, including the LOC102555978/miR-3584-5p/NLRP3 regulatory network. In vitro experiments showed that LOC102555978 promotes NLRP3 mediated pyroptosis of RM cells through sponge adsorption of miR-3584-5p, which may provide a potential therapeutic target for post-CIRI inflammation regulation. ASⅣ could inhibit pyroptosis of RM cells by down-regulating LOC102555978. LOC102555978/miR-3584-5p/NLRP3 may be the molecular mechanism of ASⅣ's CIRI protective effect.


Subject(s)
Brain Ischemia , MicroRNAs , RNA, Long Noncoding , Reperfusion Injury , Saponins , Triterpenes , Rats , Animals , Pyroptosis , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/therapeutic use , Microglia , Brain Ischemia/genetics , Reperfusion , Infarction, Middle Cerebral Artery/complications , Reperfusion Injury/genetics
17.
Angew Chem Int Ed Engl ; 63(12): e202316056, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38345287

ABSTRACT

To achieve drug release from polymer prodrug nanoparticles, the drug-polymer linker must be accessible for cleavage to release the drug, which can occur under certain physiological conditions (e.g., presence of specific enzymes). Supramolecular organization of polymer prodrug nanoparticles is crucial as it greatly affects the location of the linker, its surface exposure/solvation and thus its cleavage to release the drug. Since experimental access to these data is not straightforward, new methodologies are critically needed to access this information and to accelerate the development of more effective polymer prodrug nanoparticles, and replace the time-consuming and resource-intensive traditional trial-and-error strategy. In this context, we reported here the use of a coarse-grained model to assist the design of polymer prodrug nanoparticles with enhanced cytotoxicity. By choosing the solvent accessible surface area as the critical parameter for predicting drug release and hence cytotoxicity of polymer prodrug nanoparticles, we developed an optimized polymer-drug linker with enhanced hydrophilicity and solvation. Our hypothesis was then experimentally validated by the synthesis of the corresponding polymer prodrugs based on two different drugs (gemcitabine and paclitaxel), which demonstrated greater performances in terms of drug release and cytotoxicity on two cancer cell lines. Interestingly, our methodology can be easily applied to other polymer prodrug structures, which would contribute to the development of more efficient drug delivery systems via in silico screening.


Subject(s)
Nanoparticles , Prodrugs , Prodrugs/pharmacology , Prodrugs/chemistry , Polymers , Drug Delivery Systems/methods , Nanoparticles/chemistry , Gemcitabine , Drug Liberation , Cell Line, Tumor
18.
Acta Psychol (Amst) ; 243: 104171, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38320412

ABSTRACT

Color is not just about aesthetics but also communicates specific information and has important implications for psychological functioning. It has been shown that the color red enhances perceived attractiveness when evaluating the opposite sex, which we call the red-attractiveness effect. However, few studies have attached importance to the social context in which attractiveness ratings are made, which means that the red-attractiveness effect is rarely explained by analyzing the role of social context. We conducted two experiments to test the red-attractiveness effect in Chinese culture and the influence of context (affiliation or competitive) on the red-attractiveness effect. Experiment 1 (160 Chinese college students, 80 males) showed that the opposite-sex target in red, compared to white, was rated more attractive, and the red-attractiveness effect was applicable to Chinese culture. Experiment 2 (480 Chinese college students, 240 males) found that perceived attractiveness was strengthened in the affiliation context and weakened in the competitive context, that is, the main effect of context was significant. We did not find any significant effect of the color red in either context, that is, the color main effect was not significant. However, the results indicate that red can enhance perceived attractiveness when evaluating the opposite sex. This study demonstrates that the red attractiveness effect may exist in different cultural backgrounds and contexts.


Subject(s)
Esthetics , Sexual Behavior , Humans , Male , Sexual Behavior/psychology , Students/psychology , East Asian People , Female , Color
19.
Nat Commun ; 15(1): 1314, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351096

ABSTRACT

Immune checkpoint blockade (ICB) has shown considerable promise for treating various malignancies, but only a subset of cancer patients benefit from immune checkpoint inhibitor therapy because of immune evasion and immune-related adverse events (irAEs). The mechanisms underlying how tumor cells regulate immune cell response remain largely unknown. Here we show that hexokinase domain component 1 (HKDC1) promotes tumor immune evasion in a CD8+ T cell-dependent manner by activating STAT1/PD-L1 in tumor cells. Mechanistically, HKDC1 binds to and presents cytosolic STAT1 to IFNGR1 on the plasma membrane following IFNγ-stimulation by associating with cytoskeleton protein ACTA2, resulting in STAT1 phosphorylation and nuclear translocation. HKDC1 inhibition in combination with anti-PD-1/PD-L1 enhances in vivo T cell antitumor response in liver cancer models in male mice. Clinical sample analysis indicates a correlation among HKDC1 expression, STAT1 phosphorylation, and survival in patients with hepatocellular carcinoma treated with atezolizumab (anti-PD-L1). These findings reveal a role for HKDC1 in regulating immune evasion by coupling cytoskeleton with STAT1 activation, providing a potential combination strategy to enhance antitumor immune responses.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , Male , Mice , B7-H1 Antigen , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cytoskeleton/metabolism , Hexokinase/metabolism , Immune Evasion , Liver Neoplasms/pathology , STAT1 Transcription Factor/metabolism , Tumor Escape
20.
FASEB J ; 38(4): e23479, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38345813

ABSTRACT

Accumulating evidence shows that renal fibrosis plays a key role in the development of hypertensive nephropathy (HTN). Therefore, a better understanding of the underlying mechanism of renal fibrosis regulation in HTN would be critical for designing rational strategies for therapeutic interventions. In this study, we revealed that GPR97, a novel identified adhesion G coupled receptor, plays an important role in the regulation of Wnt/ß-catenin signaling, which is the crucial driver of renal fibrosis in HTN. First, we identified that the expression of GPR97 correlated with the ß-catenin expression in renal biopsy from patients with HTN. Moreover, we found that GPR97 deficiency inhibited Wnt/ß-catenin signaling in mice with HTN, as evidenced by the reduction of ß-catenin expression and downstream target proteins, including MMP7 and Fibronectin. Mechanistically, we found that GPR97 could directly bind with Wnt1 in cultured tubular cells and TGF-ß1 treatment enhanced the binding ability of GPR97 and Wnt1. In addition, the gene silencing of GPR97 could decrease the Wnt1-induced fibrotic phenotype of tubular cells and inflammatory responses, suggesting that the binding of GPR97 and Wnt1 promoted Wnt/ß-catenin signaling. Collectively, our studies reveal that GPR97 is a regulator of Wnt/ß-catenin signaling in HTN, and targeting GPR97 may be a novel therapeutic strategy for HTN treatment.


Subject(s)
Hypertension, Renal , Nephritis , Receptors, G-Protein-Coupled , beta Catenin , Animals , Humans , Mice , beta Catenin/metabolism , Fibrosis , Wnt Signaling Pathway/physiology , Receptors, G-Protein-Coupled/deficiency , Receptors, G-Protein-Coupled/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...