Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 13(8)2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38674482

ABSTRACT

Alfalfa (Medicago sativa L.) is an important forage legume and soil salinization seriously affects its growth and yield. In a previous study, we identified a salt-tolerant variety 'Gongnong NO.1' and a salt-sensitive variety 'Sibeide'. To unravel the molecular mechanism involved in salt stress, we conducted transcriptomic analysis on these two cultivars grown under 0 and 250 mM NaCl treatments for 0, 12, and 24 h. Totals of 336, and 548 differentially expressed genes (DEGs) in response to NaCl were, respectively, identified in the 'Gongnong NO.1' and 'Sibeide' varieties. The Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) pathway enrichment analysis showed that the DEGs were classified in carbohydrate metabolism, energy production, transcription factor, and stress-associated pathway. Expression of MsHPCA1, encoding a putative H2O2 receptor, was responsive to both NaCl and H2O2 treatment. MsHPCA1 was localized in cell membrane and overexpression of MsHPCA1 in alfalfa increased salt tolerance and H2O2 content. This study will provide new gene resources for the improvement in salt tolerance in alfalfa and legume crops, which has important theoretical significance and potential application value.

2.
Animals (Basel) ; 12(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35681814

ABSTRACT

The number of thoracolumbar vertebrae is a quantitative trait positively correlated with the economic traits of livestock. More thoracolumbar vertebrae individuals could genetically be used to improve the livestock population, as more thoracolumbar vertebrae means a longer carcass, which could bring more meat production. Nuclear receptor subfamily 6 group A member 1 (NR6A1) is considered a strong candidate gene for effecting the number of vertebrae in livestock. The purposes of this study are as follows: (a) Analyzing the effect of TLN variation on body size and carcass traits of Dezhou donkey; (b) Studying the distribution of seven single nucleotide variants (SNVs) in NR6A1 gene of Dezhou donkey; (c) Exploring the relationship between latent SNVs and TLN, the body size and carcass traits. We examined the thoracic and lumbar vertebrae number and seven SNVs in NR6A1 gene of 455 Dezhou donkeys, and analyzed the relationships between them. Five types of thoracolumbar combinations (T17L5 (individual with 17 thoracic and five lumbar vertebrae) 2.4%, T18L5 75.8%, T19L5 1.1%, T17L6 11.9%, and T18L6 8.8%) of Dezhou donkeys were detected in this study. For one thoracolumbar vertebra added, the body length of Dezhou donkey increases by 3 cm and the carcass weight increases by 6 kg. Seven SNVs (g.18093100G > T, g.18094587G > T, g.18106043G > T, g.18108764G > T, g.18110615T > G, g.18112000C > T and g.18114954T > G) of the NR6A1 gene were found to have a significant association with the TLN, body size and carcass traits of Dezhou donkey (p < 0.05), respectively. For instance, g.18114954C > T is significantly associated with lumber vertebrae number, the total number of thoracolumbar, and carcass weight, and individuals with TT genotype had significantly larger value than CC genotype (p < 0.05). Using these 7SNVs, 16 different haplotypes were estimated. Compared to Hap3Hap3, individuals homozygous for Hap2Hap2 showed significantly longer length in one thoracic spine (STL), the total thoracic vertebrae and one thoracolumbar spine. Our study will not only extend the understanding of genetic variation in the NR6A1 gene of Dezhou donkey, but also provide useful information for marker assisted selection in donkey breeding program.

3.
Mol Plant Pathol ; 23(6): 901-908, 2022 06.
Article in English | MEDLINE | ID: mdl-35393767

ABSTRACT

Potato virus Y (PVY) is an important pathogen of potato (Solanum tuberosum). Although the PBS1-RPS5 immune system is well documented in Arabidopsis thaliana, it has not been reported in potato. In Arabidopsis, the bacterial effector AvrPphB cleaves AtPBS1 to trigger an immune response. Here, we show that the AvrPphB-triggered immune response is mediated by StPBS1, a close homologue of AtPBS1 in potato. However, downstream signalling of StPBS1 was mediated by unknown resistance (R) proteins other than potato orthologues of AtRPS5 and HvPBR1, which is important for HvPBS1 signalling in barley. Immune signalling of StPBS1 is mediated by the AvrPphB C-terminal cleavage domain and an STKPQ motif, in contrast to AtPBS1-mediated immunity in which both AvrPphB cleavage fragments and an SEMPH motif are essential. The cleavage sequence of AvrPphB in StPBS1 was replaced with that of the PVY NIa-Pro protease to obtain StPBS1NIa . StPBS1NIa overexpression potato displayed stronger immunity to PVY infection than did the StPBS1 transgenic lines. StPBS1NIa was cleaved at the expected target site by NIa-Pro protease from PVY. Thus, we characterized the function of StPBS1 in potato immunity and provide a biotechnology control method for PVY via transformation of decoy-engineered StPBS1NIa .


Subject(s)
Arabidopsis , Potyvirus , Solanum tuberosum , Virus Diseases , Peptide Hydrolases/metabolism , Plant Diseases , Potyvirus/metabolism
5.
Nat Commun ; 11(1): 6014, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33293529

ABSTRACT

Current knowledge about the evolutionary history of donkeys is still incomplete due to the lack of archeological and whole-genome diversity data. To fill this gap, we have de novo assembled a chromosome-level reference genome of one male Dezhou donkey and analyzed the genomes of 126 domestic donkeys and seven wild asses. Population genomics analyses indicate that donkeys were domesticated in Africa and conclusively show reduced levels of Y chromosome variability and discordant paternal and maternal histories, possibly reflecting the consequences of reproductive management. We also investigate the genetic basis of coat color. While wild asses show diluted gray pigmentation (Dun phenotype), domestic donkeys display non-diluted black or chestnut coat colors (non-Dun) that were probably established during domestication. Here, we show that the non-Dun phenotype is caused by a 1 bp deletion downstream of the TBX3 gene, which decreases the expression of this gene and its inhibitory effect on pigment deposition.


Subject(s)
Breeding , Domestication , Equidae/genetics , Pigmentation/genetics , Selection, Genetic , Animals , Chromosome Mapping , Color , Male , Metagenomics , Whole Genome Sequencing , Y Chromosome/genetics
6.
Anim Reprod Sci ; 197: 257-267, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30195942

ABSTRACT

The AT-rich interaction domain 4 A (ARID4A) has an important role in regulating Sertoli cell function and male fertility. Its molecular mechanisms, however, remain largely unknown. In this study, two single nucleotide polymorphisms (SNPs) (g.53 G > T, ss 1966531596, and g.826 G > A, rs 210809648) were identified in the promoter region of ARID4A in 215 Chinese Holstein bulls using polymerase chain reaction (PCR)-restriction fragment length polymorphism and created restriction site-PCR. Results revealed that bulls with g.53 G > T-GG and g.826 G > A-G G genotype exhibited higher sperm deformity rate than those with g.53 G > T-TT and g.826 G > A-AA genotype (P < 0.01). Furthermore, three haplotypes (H1 (GG), H3 (TG), H4 (TA)) and six haplotype combinations (H1H1, H1H3, H1H4, H3H3, H3H4, H4H4) were obtained. The bulls with H4H4 exhibited lower sperm deformity rate than those with H1H1 and H1H3 (P < 0.05). In addition, results of bioinformatics analysis revealed that ARID4A has two promoters and that two SNPs of ARID4A are located in transcription factor binding sites. Compared with g.53 G > T-G and g.826 G > A-G allele, there was a greater fluorescence intensity in g.53 G > T-T and g.826 G > A-A allele by transient transfection in MLTC-1 cells and the luciferase report assay. qRT-PCR indicated the ARID4A expression was greater in bull spermatozoa with H4H4 haplotype combination than those with H1H1 haplotype combination (P < 0.05). Results of the present study indicate that g.53 G > T and g.826 G > A are functional mutations that are involved in regulation of ARID4A gene expression by affecting promoter activity and thus semen quality of Chinese Holstein bulls.


Subject(s)
Polymorphism, Single Nucleotide , Promoter Regions, Genetic , Retinoblastoma-Binding Protein 1/genetics , Semen Analysis/veterinary , Animals , Cattle , Genotype , Haplotypes , Male , Semen Analysis/standards , Spermatozoa
SELECTION OF CITATIONS
SEARCH DETAIL
...