Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 514
Filter
1.
Acta Pharm Sin B ; 14(6): 2613-2630, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38828140

ABSTRACT

Glucagon-like peptide-1 receptor agonists (GLP-1 RAs) protect against diabetic cardiovascular diseases and nephropathy. However, their activity in diabetic retinopathy (DR) remains unclear. Our retrospective cohort study involving 1626 T2DM patients revealed superior efficacy of GLP-1 RAs in controlling DR compared to other glucose-lowering medications, suggesting their advantage in DR treatment. By single-cell RNA-sequencing analysis and immunostaining, we observed a high expression of GLP-1R in retinal endothelial cells, which was down-regulated under diabetic conditions. Treatment of GLP-1 RAs significantly restored the receptor expression, resulting in an improvement in retinal degeneration, vascular tortuosity, avascular vessels, and vascular integrity in diabetic mice. GO and GSEA analyses further implicated enhanced mitochondrial gene translation and mitochondrial functions by GLP-1 RAs. Additionally, the treatment attenuated STING signaling activation in retinal endothelial cells, which is typically activated by leaked mitochondrial DNA. Expression of STING mRNA was positively correlated to the levels of angiogenic and inflammatory factors in the endothelial cells of human fibrovascular membranes. Further investigation revealed that the cAMP-responsive element binding protein played a role in the GLP-1R signaling pathway on suppression of STING signaling. This study demonstrates a novel role of GLP-1 RAs in the protection of diabetic retinal vasculature by inhibiting STING-elicited inflammatory signals.

2.
mBio ; : e0122024, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842315

ABSTRACT

Hybrid two-component systems (HTCSs) comprise a major class of transcription regulators of polysaccharide utilization genes in Bacteroides. Distinct from classical two-component systems in which signal transduction is carried out by intermolecular phosphotransfer between a histidine kinase (HK) and a cognate response regulator (RR), HTCSs contain the membrane sensor HK and the RR transcriptional regulator within a single polypeptide chain. Tethering the DNA-binding domain (DBD) of the RR with the dimeric HK domain in an HTCS could potentially promote dimerization of the DBDs and would thus require a mechanism to suppress DNA-binding activity in the absence of stimulus. Analysis of phosphorylation and DNA-binding activities of several HTCSs from Bacteroides thetaiotaomicron revealed a DBD suppression mechanism in which an inhibitory interaction between the DBD and the phosphoryl group-accepting receiver domain (REC) decreases autophosphorylation rates of HTCS-RECs and represses DNA-binding activities in the absence of phosphorylation. Sequence analyses and structure predictions identified a highly conserved sequence motif correlated with a conserved inhibitory domain arrangement of REC and DBD. The presence of the motif, as in most HTCSs, or its absence, in a small subset of HTCSs, is likely predictive of two distinct regulatory mechanisms evolved for different glycans. Substitutions within the conserved motif relieve the inhibitory interaction and result in elevated DNA-binding activities in the absence of phosphorylation. Our data suggest a fundamental regulatory mechanism shared by most HTCSs to suppress DBD activities using a conserved inhibitory interdomain arrangement to overcome the challenge of the fused HK and RR components. IMPORTANCE: Different dietary and host-derived complex carbohydrates shape the gut microbial community and impact human health. In Bacteroides, the prevalent gut bacteria genus, utilization of these diverse carbohydrates relies on different gene clusters that are under sophisticated control by various signaling systems, including the hybrid two-component systems (HTCSs). We have uncovered a highly conserved regulatory mechanism in which the output DNA-binding activity of HTCSs is suppressed by interdomain interactions in the absence of stimulating phosphorylation. A consensus amino acid motif is found to correlate with the inhibitory interaction surface while deviations from the consensus can lead to constitutive activation. Understanding of such conserved HTCS features will be important to make regulatory predictions for individual systems as well as to engineer novel systems with substitutions in the consensus to explore the glycan regulation landscape in Bacteroides.

3.
Plant Mol Biol ; 114(3): 52, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38696020

ABSTRACT

Salt stress is one of the major factors limiting plant growth and productivity. Many studies have shown that serine hydroxymethyltransferase (SHMT) gene play an important role in growth, development and stress response in plants. However, to date, there have been few studies on whether SHMT3 can enhance salt tolerance in plants. Therefore, the effects of overexpression or silencing of CsSHMT3 gene on cucumber seedling growth under salt stress were investigated in this study. The results showed that overexpression of CsSHMT3 gene in cucumber seedlings resulted in a significant increase in chlorophyll content, photosynthetic rate and proline (Pro) content, and antioxidant enzyme activity under salt stress condition; whereas the content of malondialdehyde (MDA), superoxide anion (H2O2), hydrogen peroxide (O2·-) and relative conductivity were significantly decreased when CsSHMT3 gene was overexpressed. However, the content of chlorophyll and Pro, photosynthetic rate, and antioxidant enzyme activity of the silenced CsSHMT3 gene lines under salt stress were significantly reduced, while MDA, H2O2, O2·- content and relative conductivity showed higher level in the silenced CsSHMT3 gene lines. It was further found that the expression of stress-related genes SOD, CAT, SOS1, SOS2, NHX, and HKT was significantly up-regulated by overexpressing CsSHMT3 gene in cucumber seedlings; while stress-related gene expression showed significant decrease in silenced CsSHMT3 gene seedlings under salt stress. This suggests that overexpression of CsSHMT3 gene increased the salt tolerance of cucumber seedlings, while silencing of CsSHMT3 gene decreased the salt tolerance. In conclusion, CsSHMT3 gene might positively regulate salt stress tolerance in cucumber and be involved in regulating antioxidant activity, osmotic adjustment, and photosynthesis under salt stress. KEY MESSAGE: CsSHMT3 gene may positively regulate the expression of osmotic system, photosynthesis, antioxidant system and stress-related genes in cucumber.


Subject(s)
Chlorophyll , Cucumis sativus , Gene Expression Regulation, Plant , Photosynthesis , Salt Stress , Salt Tolerance , Seedlings , Cucumis sativus/genetics , Cucumis sativus/growth & development , Cucumis sativus/physiology , Cucumis sativus/drug effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/drug effects , Seedlings/physiology , Gene Expression Regulation, Plant/drug effects , Salt Tolerance/genetics , Salt Stress/genetics , Chlorophyll/metabolism , Photosynthesis/genetics , Photosynthesis/drug effects , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Glycine Hydroxymethyltransferase/genetics , Glycine Hydroxymethyltransferase/metabolism , Antioxidants/metabolism , Malondialdehyde/metabolism , Plants, Genetically Modified , Gene Silencing
4.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732567

ABSTRACT

Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.


Subject(s)
Flavanones , Foam Cells , Homeostasis , Lipid Metabolism , Phenotype , Foam Cells/drug effects , Foam Cells/metabolism , Flavanones/pharmacology , Mice , Lipid Metabolism/drug effects , Animals , Humans , Homeostasis/drug effects , RAW 264.7 Cells , Cytokines/metabolism , Cholesterol/metabolism , THP-1 Cells , Macrophages/drug effects , Macrophages/metabolism , Lipoproteins, LDL/metabolism , Inflammation/metabolism , Inflammation/drug therapy
5.
J Biomed Res ; : 1-14, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38808572

ABSTRACT

As a potential endocrine-disrupting chemical, bisphenol F (BPF) may cause nonalcoholic fatty liver disease (NAFLD)-like changes, but the mechanisms underpinning its pathogenesis as well as the intervention strategies remain poorly understood. Using the electron microscopy technology, along with LipidTOX Deep Red neutral and Bodipy 493/503 staining assays, we observed that BPF treatment elicited a striking accumulation of lipid droplets in HepG2 cells, accompanied by an increased total level of triglycerides. At the molecular level, the lipogenesis-associated mRNAs and proteins, including acetyl-CoA carboxylase, fatty acid synthase, stearoyl-CoA desaturase-1, peroxisome proliferator-activated receptor gamma, and CCAAT-enhancer-binding proteins, increased significantly via the AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling regulation in both in vitro and in vivo studies. Furthermore, the immunofluorescence results also showed the robust lipogenesis induced by BPF, evident in its ability to promote the translocation of sterol regulatory element-binding protein-1c from the cytoplasm to the nuclei. To investigate the intervention strategies for BPF-induced NAFLD-like changes, we demonstrated that bellidifolin, isolated and purified from Swertia chirayita, significantly attenuated BPF-induced lipid droplet deposition in HepG2 cell and NAFLD-like changes in mice by blocking the expression of lipogenesis-associated proteins. Therefore, the present study elucidates the mechanisms underlying BPF-induced lipid accumulation in HepG2 cells, while also highlighting the potential of bellidifolin to mitigate BPF-induced NAFLD-like changes.

6.
Clin Exp Med ; 24(1): 99, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38748269

ABSTRACT

Current clinical guidelines limit surgical intervention to patients with cT1-2N0M0 small cell lung cancer (SCLC). Our objective was to reassess the role of surgery in SCLC management, and explore novel prognostic indicators for surgically resected SCLC. We reviewed all patients diagnosed with SCLC from January 2011 to April 2021 in our institution. Survival analysis was conducted using the Kaplan-Meier method, and independent prognostic factors were assessed through the Cox proportional hazard model. In addition, immunohistochemistry (IHC) staining was performed to evaluate the predictive value of selected indicators in the prognosis of surgically resected SCLC patients. In the study, 177 SCLC patients undergoing surgical resection were ultimately included. Both univariate and multivariate Cox analysis revealed that incomplete postoperative adjuvant therapy emerged as an independent risk factor for adverse prognosis (p < 0.001, HR 2.96). Survival analysis revealed significantly superior survival among pN0-1 patients compared to pN2 patients (p < 0.0001). No significant difference in postoperative survival was observed between pN1 and pN0 patients (p = 0.062). Patients with postoperative stable disease (SD) exhibited lower levels of tumor inflammatory cells (TIC) (p = 0.0047) and IFN-γ expression in both area and intensity (p < 0.0001 and 0.0091, respectively) compared to those with postoperative progressive disease (PD). Conversely, patients with postoperative SD showed elevated levels of stromal inflammatory cells (SIC) (p = 0.0453) and increased counts of CD3+ and CD8+ cells (p = 0.0262 and 0.0330, respectively). Survival analysis indicated that high levels of SIC, along with low levels of IFN-γ+ cell area within tumor tissue, may correlate positively with improved prognosis in surgically resected SCLC (p = 0.017 and 0.012, respectively). In conclusion, the present study revealed that the patients with pT1-2N1M0 staging were a potential subgroup of SCLC patients who may benefit from surgery. Complete postoperative adjuvant therapy remains an independent factor promoting a better prognosis for SCLC patients undergoing surgical resection. Moreover, CD3, CD8, IFN-γ, TIC, and SIC may serve as potential indicators for predicting the prognosis of surgically resected SCLC.


Subject(s)
CD3 Complex , Immunohistochemistry , Interferon-gamma , Lung Neoplasms , Small Cell Lung Carcinoma , Humans , Male , Female , Retrospective Studies , Middle Aged , Prognosis , Lung Neoplasms/pathology , Lung Neoplasms/surgery , Lung Neoplasms/mortality , Interferon-gamma/metabolism , Aged , Small Cell Lung Carcinoma/surgery , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/mortality , Small Cell Lung Carcinoma/metabolism , CD3 Complex/metabolism , CD8 Antigens/metabolism , CD8 Antigens/analysis , Adult , Biomarkers, Tumor/analysis , Survival Analysis , Aged, 80 and over , Kaplan-Meier Estimate , Stromal Cells/pathology , Stromal Cells/metabolism
7.
Cell Mol Biol Lett ; 29(1): 57, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38649857

ABSTRACT

In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Solanum lycopersicum , Transcription Factors , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , Gibberellins/metabolism , Promoter Regions, Genetic/genetics , Ethylenes/metabolism
8.
J Affect Disord ; 356: 737-752, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38649105

ABSTRACT

The onset of depression commonly occurs in adolescence; therefore, depressive prevention and intervention are pivotal during this period. It is becoming evident that neurotransmitter imbalance and gut microbiota dysbiosis are prominent causes of depression. However, the underlying links and mechanisms remain poorly understood. In this study, with 16S ribosomal RNA gene sequencing, genus Coprococcus markedly differentiated between the healthy and unmedicated depressive adolescents. Based on this, transplantation of Coprococcus eutactus (C.e.) was found to dramatically ameliorate the chronic restraint stress (CRS) induced depression-like changes and prevent synaptic loss and glial-stimulated neuroinflammation in mice. The Ultra-high performance liquid chromatography tandem mass spectrometry analysis (UHPLC-MS/MS) further showed that neurotoxic neurotransmitters in kynurenine pathway (KP) such as 3-hydroxykynurenine (3-HK) and 3-hydroxyanthranilic acid (3-HAA) decreased in mouse brains, mechanistically deciphering the transfer of the tryptophan metabolic pathway to serotonin metabolic signaling in the brain after C.e. treatment, which was also verified in the colon. Molecularly, blockage of KP activities mediated by C.e. was ascribed to the restraint of the limit-step enzymes responsible for kynurenine, 3-HK, and quinolinic acid generation. In the colon, C.e. treatment significantly recovered goblet cells and mucus secretion in CRS mice which may ascribe to the rebalance of the disordered gut microbiota, especially Akkermansia, Roseburia, Rikenella, Blautia, and Alloprevotella. Taken together, the current study reveals for the first time the beneficial effects and potential mechanisms of C.e. in ameliorating CRS-induced depression, unraveling the direct links between C.e. treatment and neurotransmitter rebalance, which may provide efficacious therapeutic avenues for adolescent depressive intervention.


Subject(s)
Depression , Gastrointestinal Microbiome , Neurotransmitter Agents , Restraint, Physical , Stress, Psychological , Animals , Mice , Gastrointestinal Microbiome/physiology , Stress, Psychological/metabolism , Stress, Psychological/complications , Depression/metabolism , Humans , Male , Neurotransmitter Agents/metabolism , Disease Models, Animal , Adolescent , Brain/metabolism , Kynurenine/metabolism , Kynurenine/analogs & derivatives
9.
Polymers (Basel) ; 16(6)2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38543368

ABSTRACT

Since the discovery of α-diimine catalysts in 1995, an extensive series of Brookhart-type complexes have shown their excellence in catalyzing ethylene polymerizations with remarkable activity and a high molecular weight. However, although this class of palladium complexes has proven proficiency in catalyzing ethylene copolymerization with various polar monomers, the α-diimine nickel catalysts have generally exhibited a much worse performance in these copolymerizations compared to their palladium counterparts. Recently, Brookhart et al. reported a notable exception, demonstrating that α-diimine nickel catalysts could catalyze the ethylene copolymerization with some vinylalkoxysilanes effectively, producing functionalized polyethylene incorporating trialkoxysilane (-Si(OR)3) groups. This breakthrough is significant since Pd-catalyzed copolymerizations are commercially less usable due to the high cost of palladium. Thus, the utilization of Ni, given its abundance in raw materials and cost-effectiveness, is a landmark in ethylene/polar vinyl monomer copolymerization. Inspired by these findings, we used density functional theory (DFT) calculations to investigate the mechanistic study of ethylene copolymerization with vinyltrimethoxysilane (VTMoS) catalyzed by Brookhart-type nickel catalysts, aiming to elucidate the molecular-level understanding of this unique reaction. Initially, the nickel complexes and cationic active species were optimized through DFT calculations. Subsequently, we explored the mechanisms including the chain initiation, chain propagation, and chain termination of ethylene homopolymerization and copolymerization catalyzed by Brookhart-type complexes. Finally, we conducted an energetic analysis of both the in-chain and chain-end of silane enchainment. It was found that chain initiation is the dominant step in the ethylene homopolymerization catalyzed by the α-diimine Ni complex. The 1,2- and 2,1-insertion of vinylalkoxysilane exhibit similar barriers, explaining the fact that both five-membered and four-membered chelates were identified experimentally. After the VTMoS insertion, the barriers of ethylene reinsertion become higher, indicating that this step is the rate-determining step, which could be attributed to the steric hindrance between the incoming ethylene and the bulky silane substrate. We have also reported the energetic analysis of the distribution of polar substrates. The dominant pathway of chain-end -Si(OR)3 incorporation is suggested as chain-walking → ring-opening → ethylene insertion, and the preference of chain-end -Si(OR)3 incorporation is primarily attributed to the steric repulsion between the pre-inserted silane group and the incoming ethylene molecule, reducing the likelihood of in-chain incorporation.

10.
Immunotherapy ; 16(7): 465-480, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511241

ABSTRACT

Aim: This study aims to clarify the efficacy and adverse effects of immune checkpoint inhibitors (ICIs) in the lung cancer patients with a history of interstitial lung disease (ILD). Methods: From the inception of the database to 4 April 2023, we systematically searched the four databases. Results: The objective remission rate, disease control rate, incidence of immune-associated pneumonitis (ICIP) in the combined ILD group were significantly higher than those in the non-combined ILD group. There were no significant differences between the two groups in progression-free survival, overall survival, renal insufficiency, thyroid dysfunction and gastrointestinal toxicity. Conclusion: Generally, a pre-existing ILD history can increase the efficacy and incidence of ICIs' adverse reactions. Therefore, ICIs should be administered with caution.


Immune checkpoint inhibitors are a type of immunotherapy used to treat lung cancer. Some experts disagree over whether it is safe and effective to use this type of immunotherapy in people with lung cancer who also have lung disease. In this paper, the researchers analyzed the results of lots of different studies relating to the use of immune checkpoint inhibitors to treat lung cancer in patients with and without lung disease. They wanted to find out whether immune checkpoint inhibitors differed in their effectiveness between the two groups of patients. They also looked at whether patients with lung disease experienced more negative side effects from the immunotherapy treatment. The researchers found that patients with lung disease had a bigger response to immune checkpoint inhibitor treatment than patients without lung disease. This means that this type of immunotherapy is likely to be effective at treating lung cancer in patients with lung disease. However, the researchers also found that this patient group was more likely to experience negative side effects from the immunotherapy treatment. In particular, there were many more cases of pneumonia in this group than in the patients without lung disease. Therefore, doctors should be cautious when using immunotherapy to treat lung cancer patients with lung disease, ensuring they take measures to prevent pneumonia and be better prepared in case negative side effects occur.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Diseases, Interstitial , Lung Neoplasms , Pneumonia , Humans , Immune Checkpoint Inhibitors/adverse effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Diseases, Interstitial/drug therapy , Lung Diseases, Interstitial/etiology , Retrospective Studies
11.
J Phys Chem Lett ; 15(12): 3470-3477, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38512331

ABSTRACT

The photosystem of filamentous anoxygenic phototroph Roseiflexus (Rfl.) castenholzii comprises a light-harvesting (LH) complex encircling a reaction center (RC), which intensely absorbs blue-green light by carotenoid (Car) and near-infrared light by bacteriochlorophyll (BChl). To explore the influence of light quality (color) on the photosynthetic activity, we compared the pigment compositions and triplet excitation dynamics of the LH-RCs from Rfl. castenholzii was adapted to blue-green light (bg-LH-RC) and to near-infrared light (nir-LH-RC). Both LH-RCs bind γ-carotene derivatives; however, compared to that of nir-LH-RC (12%), bg-LH-RC contains substantially higher keto-γ-carotene content (43%) and shows considerably faster BChl-to-Car triplet excitation transfer (10.9 ns vs 15.0 ns). For bg-LH-RC, but not nir-LH-RC, selective photoexcitation of Car and the 800 nm-absorbing BChl led to Car-to-Car triplet transfer and BChl-Car singlet fission reactions, respectively. The unique excitation dynamics of bg-LH-RC enhances its photoprotection, which is crucial for the survival of aquatic anoxygenic phototrophs from photooxidative stress.


Subject(s)
Chloroflexi , Chloroflexi/chemistry , Chloroflexi/metabolism , Carotenoids , Light-Harvesting Protein Complexes/chemistry , Photosynthesis , Bacteriochlorophylls/metabolism , Bacterial Proteins/chemistry
12.
Gut Microbes ; 16(1): 2327349, 2024.
Article in English | MEDLINE | ID: mdl-38512768

ABSTRACT

In the development of Type 1 diabetes (T1D), there are critical states just before drastic changes, and identifying these pre-disease states may predict T1D or provide crucial early-warning signals. Unlike gene expression data, gut microbiome data can be collected noninvasively from stool samples. Gut microbiome sequencing data contain different levels of phylogenetic information that can be utilized to detect the tipping point or critical state in a reliable manner, thereby providing accurate and effective early-warning signals. However, it is still difficult to detect the critical state of T1D based on gut microbiome data due to generally non-significant differences between healthy and critical states. To address this problem, we proposed a new method - microbiome network flow entropy (mNFE) based on a single sample from each individual - for detecting the critical state before seroconversion and abrupt transitions of T1D at various taxonomic levels. The numerical simulation validated the robustness of mNFE under different noise levels. Furthermore, based on real datasets, mNFE successfully identified the critical states and their dynamic network biomarkers (DNBs) at different taxonomic levels. In addition, we found some high-frequency species, which are closely related to the unique clinical characteristics of autoantibodies at the four levels, and identified some non-differential 'dark species' play important roles during the T1D progression. mNFE can robustly and effectively detect the pre-disease states at various taxonomic levels and identify the corresponding DNBs with only a single sample for each individual. Therefore, our mNFE method provides a new approach not only for T1D pre-disease diagnosis or preventative treatment but also for preventative medicine of other diseases by gut microbiome.


Subject(s)
Diabetes Mellitus, Type 1 , Dinitrofluorobenzene/analogs & derivatives , Gastrointestinal Microbiome , Humans , Diabetes Mellitus, Type 1/diagnosis , Entropy , Phylogeny , Biomarkers
13.
Angew Chem Int Ed Engl ; 63(22): e202404258, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38454791

ABSTRACT

Engineering advantageous defects to construct well-defined active sites in catalysts is promising but challenging to achieve efficient photocatalytic NH3 synthesis from N2 and H2O due to the chemical inertness of N2 molecule. Here, we report defective Fe-based metal-organic framework (MOF) photocatalysts via a non-thermal plasma-assisted synthesis strategy, where their NH3 production capability is synergistically regulated by two types of defects, namely, bridging organic ligands and terminal inorganic ligands (OH- and H2O). Specially, the optimized MIL-100(Fe) catalysts, where there are only terminal inorganic ligand defects and coexistence of dual defects, exhibit the respective 1.7- and 7.7-fold activity enhancement comparable to the pristine catalyst under visible light irradiation. As revealed by experimental and theoretical calculation results, the dual defects in the catalyst induce the formation of abundant and highly accessible coordinatively unsaturated Fe active sites and synergistically optimize their geometric and electronic structures, which favors the injection of more d-orbital electrons in Fe sites into the N2 π* antibonding orbital to achieve N2 activation and the formation of a key intermediate *NNH in the reaction. This work provides a guidance on the rational design and accurate construction of porous catalysts with precise defective structures for high-performance activation of catalytic molecules.

14.
Mater Horiz ; 11(10): 2457-2468, 2024 05 20.
Article in English | MEDLINE | ID: mdl-38465967

ABSTRACT

In vivo transmembrane-voltage detection reflected the electrophysiological activities of the biological system, which is crucial for the diagnosis of neuronal disease. Traditional implanted electrodes can only monitor limited regions and induce relatively large tissue damage. Despite emerging monitoring methods based on optical imaging have access to signal recording in a larger area, the recording wavelength of less than 1000 nm seriously weakens the detection depth and resolution in vivo. Herein, a Förster resonance energy transfer (FRET)-based nano-indicator, NaYbF4:Er@NaYF4@Cy7.5@DPPC (Cy7.5-ErNP) with emission in the near-infrared IIb biological window (NIR-IIb, 1500-1700 nm) is developed for transmembrane-voltage detection. Cy7.5 dye is found to be voltage-sensitive and is employed as the energy donor for the energy transfer to the lanthanide nanoparticle, NaYbF4:Er@NaYF4 (ErNP), which works as the acceptor to achieve electrophysiological signal responsive NIR-IIb luminescence. Benefiting from the high penetration and low scattering of NIR-IIb luminescence, the Cy7.5-ErNP enables both the visualization of action potential in vitro and monitoring of Mesial Temporal lobe epilepsy (mTLE) disease in vivo. This work presents a concept for leveraging the lanthanide luminescent nanoprobes to visualize electrophysiological activity in vivo, which facilitates the development of an optical nano-indicator for the diagnosis of neurological disorders.


Subject(s)
Fluorescence Resonance Energy Transfer , Nanoparticles , Animals , Fluorescence Resonance Energy Transfer/methods , Optical Imaging/methods , Mice , Electrophysiological Phenomena/physiology , Infrared Rays , Humans , Male , Rats , Action Potentials/physiology , Fluorescent Dyes
15.
Neuroscience ; 545: 111-124, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38492796

ABSTRACT

Armcx1 is a member of the ARMadillo repeat-Containing protein on the X chromosome (ARMCX) family, which is recognized to have evolutionary conserved roles in regulating mitochondrial transport and dynamics. Previous research has shown that Armcx1 is expressed at higher levels in mice after axotomy and in adult retinal ganglion cells after crush injury, and this protein increases neuronal survival and axonal regeneration. However, its role in traumatic brain injury (TBI) is unclear. Therefore, the aim of this study was to assess the expression of Armcx1 after TBI and to explore possible related mechanisms by which Armcx1 is involved in TBI. We used C57BL/6 male mice to model TBI and evaluated the role of Armcx1 in TBI by transfecting mice with Armcx1 small interfering RNA (siRNA) to inhibit Armcx1 expression 24 h before TBI modeling. Western blotting, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL) staining, Nissl staining, transmission electron microscopy, adenosine triphosphate (ATP) level measurement, neuronal apoptosis analysis, neurological function scoring and the Morris water maze were performed. The results demonstrated that Armcx1 protein expression was elevated after TBI and that the Armcx1 protein was localized in neurons and astroglial cells in cortical tissue surrounding the injury site. In addition, inhibition of Armcx1 expression further led to impaired mitochondrial transport, abnormal morphology, reduced ATP levels, aggravation of neuronal apoptosis and neurological dysfunction, and decrease Miro1 expression. In conclusion, our findings indicate that Armcx1 may exert neuroprotective effects by ameliorating neurological injury after TBI through a mitochondrial transport pathway involving Miro1.


Subject(s)
Armadillo Domain Proteins , Brain Injuries, Traumatic , Mice, Inbred C57BL , Mitochondria , rho GTP-Binding Proteins , Animals , Male , Mice , Adenosine Triphosphate/metabolism , Apoptosis/physiology , Armadillo Domain Proteins/metabolism , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Maze Learning/physiology , Mitochondria/metabolism , Neurons/metabolism , Neurons/pathology , rho GTP-Binding Proteins/metabolism
16.
Angew Chem Int Ed Engl ; 63(14): e202319216, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38337143

ABSTRACT

The synthesis of hydrogen peroxide through artificial photosynthesis is a green and promising technology with advantages in sustainability, economy and safety. However, superoxide radical (⋅O2 -), an important intermediate in photocatalytic oxygen reduction to H2O2 production, has strong oxidizing properties that potentially destabilize the catalyst. Therefore, avoiding the accumulation of ⋅O2 - for its rapid conversion to H2O2 is of paramount significance in improving catalyst stability and H2O2 yield. In this work, a strategy was developed to utilize protonated groups for the rapid depletion of converted ⋅O2 -, thereby the efficiency of photocatalytic synthesis of H2O2 from CN was successfully enhanced by 47-fold. The experimental findings demonstrated that polydopamine not only improved carrier separation efficiency, and more importantly, provided the adsorption reduction active site for ⋅O2 - for efficient H2O2 production. This work offers a versatile approach for synthesizing efficient and stable photocatalysts.

17.
J Hypertens ; 42(6): 1048-1056, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38406922

ABSTRACT

BACKGROUND: The correlation between systolic blood pressure (SBP) and mortality in hypertensive patients with different phenotypes of heart failure (HF) has not been adequately studied, and optimal blood pressure control targets remain controversial. To explore the link between SBP and prognosis in all or three ejection fraction (EF) phenotypes of HF patients with hypertension. METHODS: We analyzed 1279 HF patients complicated by hypertension in a retrospective cohort. The SBP <130 mmHg group included 383 patients, and the SBP ≥130 mmHg group included 896 patients. The major end point was all-cause mortality. RESULTS: Of the 1279 study patients, with a median age of 66.0 ±â€Š12.0 years, 45.3% were female. The proportions of the three subtypes of heart failure complicated with hypertension (HFrEF, HEmrEF, and HFpEF) were 26.8%, 29.3%, and 43.9%, respectively. During the 1-year follow-up, 223 patients experienced all-cause death, and 133 experienced cardiovascular death. Restricted cubic splines showed that the risk of all-cause and cardiovascular death increased gradually as the SBP level decreased in patients with HFrEF and HFmrEF. Furthermore, the multivariate Cox proportional hazards model revealed that SBP <130 mmHg was also associated with an increased risk of all-cause death [hazard ratio (HR) 2.53, 95% confidence interval (CI) 1.23-5.20, P  = 0.011] and cardiovascular death (HR 1.91, 95% CI 1.01-3.63, P  = 0.047) in HFrEF patients. A trend toward increased risk was observed among HFmrEF patients, but it was not statistically significant. This trend was not observed in HFpEF patients. CONCLUSION: In HFrEF patients, SBP <130 mmHg was associated with an increased risk of all-cause and cardiovascular mortality. A trend toward increased risk was observed among HFmrEF patients, but not among HFpEF patients.


Subject(s)
Blood Pressure , Heart Failure , Hypertension , Humans , Female , Heart Failure/mortality , Heart Failure/physiopathology , Heart Failure/complications , Male , Aged , Hypertension/physiopathology , Hypertension/mortality , Hypertension/complications , Retrospective Studies , Middle Aged , Stroke Volume/physiology , Prognosis , Systole
18.
Brain Res Bull ; 207: 110870, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38185389

ABSTRACT

Traumatic brain injury (TBI) is a common disease worldwide with high mortality and disability rates. Besides the primary mechanical injury, the secondary injury associated with TBI can also induce numerous pathological changes, such as brain edema, nerve apoptosis, and neuroinflammation, which further aggravates neurological dysfunction and even causes the death due to the primary injury. Among them, neuronal apoptosis is a key link in the injury. Melanocortin-1 receptor (MC1R) is a G protein coupled receptor, belonging to the melanocortin receptor family. Studies have shown that activation of MC1R inhibits oxidative stress and apoptosis, and confers neuroprotective effects against various neurological diseases. Merlin is a protein product of the NF2 gene, which is widely expressed in the central nervous system (CNS) of mice, rats, and humans. Studies have indicated that Merlin is associated with MC1R. In this study, we explored the anti-apoptotic effects and potential mechanisms of MC1R. A rat model of TBI was established through controlled cortical impact. The MC1R-specific agonist Nle4-D-Phe7-α-Melanocyte (NDP-MSH) and the inhibitor MSG-606 were employed to explore the effects of MC1R and Merlin following TBI and investigated the associated mechanisms. The results showed that the expression levels of MC1R and Merlin were upregulated after TBI, and activation of MC1R promoted Merlin expression. Further, we found that MC1R activation significantly improved neurological dysfunction and reduced brain edema and neuronal apoptosis induced by TBI in rats. Mechanistically, its neuroprotective function and anti-apoptotic were partly associated with MC1R activation. In conclusion, we demonstrated that MC1R activation after TBI may inhibit apoptosis and confer neuroprotection by upregulating the expression of Merlin.


Subject(s)
Brain Edema , Brain Injuries, Traumatic , Animals , Rats , Apoptosis , Brain Edema/etiology , Brain Injuries, Traumatic/pathology , Genes, Neurofibromatosis 2 , Neurofibromin 2/genetics , Neurofibromin 2/pharmacology , Receptor, Melanocortin, Type 1/genetics , Receptor, Melanocortin, Type 1/metabolism
19.
Environ Pollut ; 346: 123356, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38266696

ABSTRACT

Bisphenol F (BPF), one of the major alternatives of Bisphenol A (BPA), is becoming extensively used in industrial production with great harm to human beings and environment. Recent studies have revealed that environmental exposure is crucial to the initiation and development of depression. Thereby, the aim the present study is to ascertain the correlationship between the BPF exposure and depression occurrence. In the current study, BPF strikingly triggered depression-like changes in mice through the sucrose preference test (SPT), tail suspension test (TST) and forced swim test (FST), accompanied by the perturbation of the kynurenine (KYN) metabolic pathway along the "liver-brain" axis. Mechanistically, the neurotransmitters from the tryptophan metabolic pathway were converted to the toxic KYN pathway after BPF treatment. With the ELISA assay, it revealed that the toxic KYN metabolites, including KYN and 3-hydroxykynurenine (3-HK), were strikingly increased in the mouse brains which was ascribed to the enhanced expression of the rate-limiting enzymes Indoleamine 2,3-dioxygenase (IDO1) and Kynurenine 3-monooxygenase (KMO) respectively. Interestingly, the increased brain KYN induced by BPF was also validated partially from the periphery, since the ELISA and western blotting results indicated the significantly increased KYN in the serum and L-type amino acid transporter 1 (LAT1) in the brain, the key transporter responsible for KYN and 3-HK crossing the blood-brain barrier. Intriguingly, the liver-derived KYN metabolic pathway was the important source of the peripheral KYN and 3-HK, as BPF substantially enhanced hepatic IDO1, Tryptophan, 2, 3-dioxygenase (TDO2), and KMO levels indicated by western blotting. This study is the first to delineate previously unrecognized BPF-induced depression by regulating the KYN metabolic pathway along the "liver-brain" axis; therefore, targeting LAT1 or hepatic KYN signaling may provide a potentially unique therapeutic intervention in BPF-induced depression.


Subject(s)
Benzhydryl Compounds , Kynurenine , Phenols , Tryptophan , Humans , Mice , Animals , Kynurenine/metabolism , Tryptophan/metabolism , Depression/chemically induced , Brain/metabolism , Liver/metabolism , Metabolic Networks and Pathways
20.
J Asian Nat Prod Res ; 26(2): 204-213, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38213077

ABSTRACT

Three new cadinane sesquiterpenes (1-3) and three known sesquiterpenes were isolated from the stems and branches of Illicium ternstroemioides A. C. Smith. The structures of the new compounds were elucidated by extensive analysis of spectroscopic and HRESIMS data. The structures of illiternins A-C (1-3) were confirmed by single crystal X-ray diffraction, allowing for the determination of their absolute configurations. Compounds 3 and 6 exhibited antiviral activity against Coxsackievirus B3 with IC50 values of 33.3 and 57.7 µM, respectively.


Subject(s)
Illicium , Sesquiterpenes , Illicium/chemistry , Molecular Structure , Polycyclic Sesquiterpenes , Sesquiterpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...