Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 12: 715559, 2021.
Article in English | MEDLINE | ID: mdl-34539647

ABSTRACT

The involvement of gut microbiota in T-cell trafficking into tumor tissue of colorectal cancer (CRC) remains to be further elucidated. The current study aimed to evaluate the expression of major cytotoxic T-cell trafficking chemokines (CTTCs) and chemokine-associated microbiota profiles in both tumor and adjacent normal tissues during CRC progression. We analyzed the expression of chemokine C-X-C motif ligands 9, 10, and 11 (CXCL9, CXCL10, and CXCL11), and C-C motif ligand 5 (CCL5), characterized gut mucosa-associated microbiota (MAM), and investigated their correlations in CRC patients. Our results showed that the expression of CXCL9, CXCL10, and CXCL11 was significantly higher in tumor than in adjacent normal tissues in 136 CRC patients. Notably, the high expression of CXCL9 in tumor tissues was associated with enhanced CD8+ T-cell infiltration and improved survival. Moreover, the MAM in tumor tissues showed reduction of microbial diversity and increase of oral bacteria. Microbial network analysis identified differences in microbial composition and structure between tumor and adjacent normal tissues. In addition, stronger associations between oral bacteria and other gut microbes were observed. Furthermore, the correlation analysis between the defined MAM and individual CTTCs showed that the CTTCs' correlated operational taxonomic units (OTUs) in tumor and adjacent normal tissues rarely overlap with each other. Notably, all the enriched OTUs were positively correlated with the CTTCs in either tumor or adjacent normal tissues. Our findings demonstrated stronger interactions between oral bacteria and gut microbes, and a shifted correlation pattern between MAM and major CTTCs in tumor tissues, underlining possible mechanisms of gut microbiota-host interaction in CRC.


Subject(s)
Chemokines/metabolism , Chemotaxis, Leukocyte/immunology , Colorectal Neoplasms/etiology , Colorectal Neoplasms/metabolism , Gastrointestinal Microbiome/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/metabolism , Adult , Aged , Biomarkers , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Colorectal Neoplasms/pathology , Computational Biology/methods , Disease Progression , Disease Susceptibility , Female , Fluorescent Antibody Technique , Humans , Immunohistochemistry , Male , Metagenome , Metagenomics , Middle Aged , Neoplasm Grading , Neoplasm Staging
2.
Chin Med J (Engl) ; 134(12): 1450-1456, 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34091522

ABSTRACT

BACKGROUND: Drug-coated balloons (DCBs) have emerged as potential alternatives to drug-eluting stents in specific lesion subsets for de novo coronary lesions. Quantitative flow ratio (QFR) is a method based on the three-dimensional quantitative coronary angiography and contrast flow velocity during coronary angiography (CAG), obviating the need for an invasive fractional flow reserve procedural. This study aimed to assess the serial angiographic changes of de novo lesions post-DCB therapy and further explore the cut-off values of lesion and vessel QFR, which predict vessel restenosis (diameter stenosis [DS] ≥50%) at mid-term follow-up. METHODS: The data of patients who underwent DCB therapy between January 2014 and December 2019 from the multicenter hospital were retrospectively collected for QFR analysis. From their QFR performances, which were analyzed by CAG images at follow-up, we divided them into two groups: group A, showing target vessel DS ≥50%, and group B, showing target vessel DS <50%. The median follow-up time was 287 days in group A and 227 days in group B. We compared the clinical characteristics, parameters during DCB therapy, and QFR performances, which were analyzed by CAG images between the two groups, in need to explore the cut-off value of lesion/vessel QFR which can predict vessel restenosis. Student's t test was used for the comparison of normally distributed continuous data, Mann-Whitney U test for the comparison of non-normally distributed continuous data, and receiver operating characteristic (ROC) curves for the evaluation of QFR performance which can predict vessel restenosis (DS ≥50%) at mid-term follow-up using the area under the curve (AUC). RESULTS: A total of 112 patients with 112 target vessels were enrolled in this study. Group A had 41 patients, while group B had 71. Vessel QFR and lesion QFR were lower in group A than in group B post-DCB therapy, and the cut-off values of lesion QFR and vessel QFR in the ROC analysis to predict target vessel DS ≥50% post-DCB therapy were 0.905 (AUC, 0.741 [95% confidence interval, CI: 0.645, 0.837]; sensitivity, 0.817; specificity, 0.561; P < 0.001) and 0.890 (AUC, 0.796 [95% CI: 0.709, 0.882]; sensitivity, 0.746; specificity, 0.780; P < 0.001). CONCLUSIONS: The cut-off values of lesion QFR and vessel QFR can assist in predicting the angiographic changes post-DCB therapy. When lesion/vessel QFR values are <0.905/0.890 post-DCB therapy, a higher risk of vessel restenosis is potentially predicted at follow-up.


Subject(s)
Coronary Artery Disease , Coronary Restenosis , Fractional Flow Reserve, Myocardial , Pharmaceutical Preparations , Constriction, Pathologic , Coronary Angiography , Coronary Artery Disease/therapy , Follow-Up Studies , Humans , Predictive Value of Tests , Retrospective Studies , Treatment Outcome
3.
Biochem Biophys Res Commun ; 531(2): 172-179, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32788070

ABSTRACT

Mutations in the retinitis pigmentosa GTPase regulator (RPGR) gene, are the major cause of X-linked retinitis pigmentosa (RP), in which exon open reading frame 15 (ORF15) of RPGR has been implicated to play a substantial role. We identified a novel hemizygous missense mutation E585K of RPGR from whole-exome sequencing of RP. RNA-Seq analysis and functional study were conducted to investigate the underlying pathogenic mechanism of the mutation. Our results showed that the mutation actually affected RPGR ORF15 splicing. RNA-Seq analysis of the human retina followed by validation in cells revealed a complex splicing pattern near the 3' boundary of RPGR exon 14 in the ORF15 region, resulting from a variety of alternative splicing events (ASEs). The wildtype RPGR mini-gene expressed in human 293T cells confirmed these ASEs in vitro. In contrast, without new RNA species detected, the mutant mini-gene disrupted the splicing pattern of the ORF15 region, and caused loss of RPGR transcript heterogeneity. The RNA species derived from the mutant mini-gene were predominated by a minor out-of-frame transcript that was also observed in wildtype RPGR, resulting from an upstream alternative 5' splice site in exon 14. Our findings therefore provide insights into the influence of RPGR exonic mutations on alternative splicing of the ORF15 region, and the underlying molecular mechanism of RP.


Subject(s)
Eye Proteins/genetics , Mutation, Missense/genetics , Open Reading Frames/genetics , Retinitis Pigmentosa/genetics , Amino Acid Sequence , Base Sequence , Cell Line , Eye Proteins/chemistry , Hemizygote , Humans , Male , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...