Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Int J Oral Sci ; 16(1): 30, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622128

ABSTRACT

Bacterial resistance and excessive inflammation are common issues that hinder wound healing. Antimicrobial peptides (AMPs) offer a promising and versatile antibacterial option compared to traditional antibiotics, with additional anti-inflammatory properties. However, the applications of AMPs are limited by their antimicrobial effects and stability against bacterial degradation. TFNAs are regarded as a promising drug delivery platform that could enhance the antibacterial properties and stability of nanodrugs. Therefore, in this study, a composite hydrogel (HAMA/t-GL13K) was prepared via the photocross-linking method, in which tFNAs carry GL13K. The hydrogel was injectable, biocompatible, and could be instantly photocured. It exhibited broad-spectrum antibacterial and anti-inflammatory properties by inhibiting the expression of inflammatory factors and scavenging ROS. Thereby, the hydrogel inhibited bacterial infection, shortened the wound healing time of skin defects in infected skin full-thickness defect wound models and reduced scarring. The constructed HAMA/tFNA-AMPs hydrogels exhibit the potential for clinical use in treating microbial infections and promoting wound healing.


Subject(s)
Bacterial Infections , Nucleic Acids , Humans , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Nucleic Acids/pharmacology , Hydrogels/pharmacology , Hydrogels/chemistry , Wound Healing , Anti-Bacterial Agents/pharmacology , Anti-Inflammatory Agents/pharmacology
2.
Nanoscale Adv ; 5(20): 5426-5434, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37822913

ABSTRACT

In recent decades, diabetes mellitus (DM) has become a major global health problem owing to its high prevalence and increased incidence of diabetes-associated complications, including diabetic wounds (DWs), diabetic nephropathy, metabolic syndrome, diabetic retinopathy, and diabetic neuropathy. In both type 1 and type 2 diabetes, tissue damage is organ-specific, but closely related to the overproduction of reactive oxygen species (ROS) and hyperglycaemia-induced macrovascular system damage. However, existing therapies have limited effects on complete healing of diabetic complications. Fortunately, recent advances in functional nucleic acid materials have provided new opportunities for the treatment and diagnosis of diabetic complications. Functional nucleic acids possess independent structural functions that can replace traditional proteases and antibodies and perform specific biological non-genetic functions. This review summarises the current functional nucleic acid materials reported for the treatment of diabetic complications, including tetrahedral framework nucleic acids (tFNAs), short interfering RNA (siRNA), micorRNA (miRNA), locked nucleic acids, antisense oligonucleotides (ASOs), and DNA origami, which may assist in the development of novel nucleic acids with new functions and capabilities for better healing of diabetic complications.

3.
ACS Nano ; 17(22): 22334-22354, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37782570

ABSTRACT

As a major late complication of diabetes, diabetic peripheral neuropathy (DPN) is the primary reason for amputation. Nevertheless, there are no wonder drugs available. Regulating dysfunctional mitochondria is a key therapeutic target for DPN. Resveratrol (RSV) is widely proven to guard mitochondria, yet the unsatisfactory bioavailability restricts its clinical application. Tetrahedral framework nucleic acids (tFNAs) are promising carriers due to their excellent cell entrance efficiency, biological safety, and structure editability. Here, RSV was intercalated into tFNAs to form the tFNAs-RSV complexes. tFNAs-RSV achieved enhanced stability, bioavailability, and biocompatibility compared with tFNAs and RSV alone. With its treatment, reactive oxygen species (ROS) production was minimized and reductases were activated in an in vitro model of DPN. Besides, respiratory function and adenosine triphosphate (ATP) production were enhanced. tFNAs-RSV also exhibited favorable therapeutic effects on sensory dysfunction, neurovascular deterioration, demyelination, and neuroapoptosis in DPN mice. Metabolomics analysis revealed that redox regulation and energy metabolism were two principal mechanisms that were impacted during the process. Comprehensive inspections indicated that tFNAs-RSV inhibited nitrosation and oxidation and activated reductase and respiratory chain. In sum, tFNAs-RSV served as a mitochondrial nanoguard (mito-guard), representing a viable drilling target for clinical drug development of DPN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Nucleic Acids , Mice , Animals , Diabetic Neuropathies/drug therapy , Oxidation-Reduction , Mitochondria , Antioxidants/chemistry , Resveratrol/metabolism , Resveratrol/pharmacology , Nucleic Acids/metabolism , Homeostasis , Diabetes Mellitus/metabolism
4.
Curr Drug Metab ; 24(5): 314, 2023.
Article in English | MEDLINE | ID: mdl-37728080
5.
Clin Oral Implants Res ; 34(12): 1373-1384, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37771049

ABSTRACT

OBJECTIVES: To radiographically evaluate the stability of the bone substitute augmented outside the buccal bony arch contour in the maxillary esthetic zone. MATERIALS AND METHODS: Patients who missed a single anterior tooth and received simultaneous GBR in implant surgery were included. The contralateral homonymous area of the implant site was horizontally mirrored as the individual bone arch contour. According to the relative position of the postoperative buccal grafts and bone arch contour at the implant shoulder, 62 patients were allocated into the outside-contour (OC) and inside-contour (IC) groups. Cone-beam computed tomography was performed before surgery, after implant insertion, before re-entry surgery, and at follow-up. The profilometric changes of the buccal bone plate were analyzed via the bone distance to the mirrored bony contour. RESULTS: At the implant shoulder, the bone distance in the OC group was higher than that in the IC group, with statistically significant differences at re-entry surgery and follow-up. However, the bone grafts outside the bone arch contour were reduced into the contour after remodeling and showed more bone resorption than the IC group. At other vertical levels below the implant shoulder, bony grafting of overcontour 1-2 mm range was favorable to regenerate stable bone plates reaching the individual contour at follow-up. CONCLUSIONS: The overaugmented bone outside the buccal bone arch contour tended to remodel into the original contour, which indicates that the anterior bone arch contour is worthy of careful observation for deciding buccolingual implant position and bone augmentation width.


Subject(s)
Alveolar Ridge Augmentation , Dental Implants, Single-Tooth , Dental Implants , Humans , Dental Implantation, Endosseous/methods , Retrospective Studies , Maxilla/diagnostic imaging , Maxilla/surgery , Alveolar Ridge Augmentation/methods , Treatment Outcome , Bone Regeneration
6.
ACS Nano ; 17(22): 22668-22683, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37751401

ABSTRACT

Complications arising from diabetes can threaten multiple organs. Advanced glycation end products (AGEs) play a significant role in inducing these complications. Highly processed diets and hyperglycemia facilitate the accumulation of AGEs in the body. Interaction between AGEs and their main receptor (RAGE) initiates the transmission of intracellular inflammatory and cell death signals, which ultimately lead to complications. To counter AGEs-induced damage, we developed an siRNA-binding tetrahedral framework nucleic acids (TDN) system, termed Tsi, which combines the potent cell membrane penetrability and serum stability of TDN with the gene-targeting specificity of siRNA-RAGE. Tsi effectively and persistently downregulates the expression of RAGE, thereby suppressing inflammation by blocking the NF-κB pathway as well as exhibiting antioxidant functions. Furthermore, Tsi regulates the pyroptosis state of macrophages via the NLRP3/caspase-1 axis, which inhibits the spread of cell death signals and maintains homeostasis. This is of great significance for the synergistic treatment strategy for systemic complications in patients with refractory hyperglycemia. In summary, this study describes a nanomedicine that targets the RAGE and suppresses AGE-induced inflammation. This nucleic acid drug holds long-lasting efficacy and is independent of lowering hyperglycemia, which provides a strategy for the treatment of diabetic complications and age-related diseases.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Hyperglycemia , Nucleic Acids , Humans , Receptor for Advanced Glycation End Products/genetics , Receptor for Advanced Glycation End Products/metabolism , Glycation End Products, Advanced/metabolism , Glycation End Products, Advanced/pharmacology , RNA, Small Interfering/genetics , Diabetes Complications/metabolism , Inflammation/drug therapy
7.
Int J Oral Sci ; 15(1): 28, 2023 07 11.
Article in English | MEDLINE | ID: mdl-37433766

ABSTRACT

This study aimed to introduce a minimally invasive technique for maxillary sinus floor elevation using the lateral approach (lSFE) and to determine the factors that influence the stability of the grafted area in the sinus cavity. Thirty patients (30 implants) treated with lSFE using minimally invasive techniques from 2015 to 2019 were included in the study. Five aspects of the implant (central, mesial, distal, buccal, and palatal bone heights [BHs]) were measured using cone-beam computed tomography (CBCT) before implant surgery, immediately after surgery (T0), 6 months after surgery (T1), and at the last follow-up visit (T2). Patients' characteristics were collected. A small bone window (height, (4.40 ± 0.74) mm; length, (6.26 ± 1.03) mm) was prepared. No implant failed during the follow-up period (3.67 ± 1.75) years. Three of the 30 implants exhibited perforations. Changes in BH of the five aspects of implants showed strong correlations with each other and BH decreased dramatically before second-stage surgery. Residual bone height (RBH) did not significantly influence BH changes, whereas smoking status and type of bone graft materials were the potentially influential factors. During the approximate three-year observation period, lSFE with a minimally invasive technique demonstrated high implant survival rate and limited bone reduction in grafted area. In conclusion, lSFE using minimally invasive techniques was a viable treatment option. Patients who were nonsmokers and whose sinus cavity was filled with deproteinized bovine bone mineral (DBBM) had significantly limited bone resorption in grafted area.


Subject(s)
Bone Resorption , Sinus Floor Augmentation , Humans , Animals , Cattle , Maxillary Sinus/diagnostic imaging , Maxillary Sinus/surgery , Retrospective Studies , Cone-Beam Computed Tomography
8.
Curr Drug Metab ; 24(5): 367-384, 2023.
Article in English | MEDLINE | ID: mdl-37069706

ABSTRACT

BACKGROUND: Nucleic acid is a genetic material that shows great potential in a variety of biological applications. With the help of nanotechnology, the fabrication of DNA-based nanomaterials has emerged. From genetic DNA to non-genetic functional DNA, from single-layer and flat structure to multi-layer and complex structure, and from two-dimensional to three-dimensional structure, DNA-based nanomaterials have been greatly developed, bringing significant changes to our lives. In recent years, the research of DNA-based nanomaterials for biological applications has developed rapidly. METHODS: We extensively searched the bibliographic database for a research article on nanotechnology and immunotherapy and further discussed the advantages and drawbacks of current DNA-based nanomaterials in immunotherapy. By comparing DNA-based nanomaterials with traditional biomaterials applied in immunotherapy, we found that DNA-based nanomaterials are a promising candidate material in Immunotherapy. RESULTS: Due to the unrivaled editability and biocompatibility, DNA-based nanomaterials are not only investigated as therapeutic particles to influence cell behavior but also as drug delivery systems to treat a variety of diseases. Moreover, when DNA-based nanomaterials are loaded with therapeutic agents, including chemical drugs and biomolecules, which significantly enhance the therapeutic effects, DNA-based nanomaterials have great potential in immunotherapy. CONCLUSION: This review summarizes the structural development history of DNA-based nanomaterials and their biological applications in immunotherapy, including the potential treatment of cancer, autoimmune diseases, and inflammatory diseases.


Subject(s)
Nanostructures , Neoplasms , Humans , Nanostructures/therapeutic use , Nanostructures/chemistry , Drug Delivery Systems , Nanotechnology/methods , DNA , Immunotherapy , Neoplasms/therapy
9.
ACS Appl Mater Interfaces ; 14(33): 37478-37492, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35951372

ABSTRACT

Astrocytes, as the most plentiful subtypes of glial cells, play an essential biphasic function in ischemic stroke (IS). However, although having beneficial effects on stroke via promoting nerve restoration and limiting lesion extension, astrocytes can unavoidably cause exacerbated brain damage due to their participation in the inflammatory response. Therefore, seeking an effective and safe drug/strategy for protecting and regulating astrocytes in stroke is urgent. Here, we employ tetrahedral framework nucleic acid (tFNA) nanomaterials for astrocytes in stroke, considering their excellent biological properties and outstanding biosafety. In vitro, tFNA can inhibit calcium overload and ROS regeneration triggered by oxygen-glucose deprivation/reoxygenation (OGD/R), which provides a protective effect against astrocytic apoptosis. Furthermore, morphological changes such as hyperplasia and hypertrophy of reactive astrocytes are restrained, and the astrocytic polarization from the proinflammatory A1 phenotype to the neuroprotective A2 phenotype is facilitated by tFNA, which further alleviates cerebral infarct volume and facilitates the recovery of neurological function in transient middle cerebral artery occlusion (tMCAo) rat models. Moreover, the TLRs/NF-κB signaling pathway is downregulated by tFNA, which may be the potential mechanism of tFNA for protecting astrocytes in stroke. Collectively, we demonstrate that tFNA can effectively mediate astrocytic apoptosis, activation, and polarization to alleviate brain injury, which represents a potential intervention strategy for IS.


Subject(s)
Brain Ischemia , Ischemic Stroke , Nucleic Acids , Stroke , Animals , Apoptosis , Astrocytes/metabolism , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Nucleic Acids/metabolism , Nucleic Acids/pharmacology , Rats , Stroke/drug therapy
10.
Adv Mater ; 34(46): e2201731, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35511782

ABSTRACT

Tetrahedral framework nucleic acids (tFNAs) have attracted extensive attention as drug nanocarriers because of their excellent cellular uptake. However, for oligonucleotide cargos, tFNA mainly acts as a static delivery platform generated via sticky-ended ligation. Here, inspired by the original stable space inside the tetrahedral scaffold, a dynamic lysosome-activated tFNA nanobox is fabricated for completely encapsulating a short interfering RNA (siRNA) of interest. The closed tetrahedral structure endows cargo siRNA with greater resistance against RNase and serum and enables solid integration with the vehicle during delivery. Moreover, the pH-responsive switch of nanobox allows the controlled release of siRNA upon entry into lysosomes at cell culture temperature. Based on protective loading and active unloading, an excellent silencing effect on the target tumor necrosis factor alpha (TNFα) gene is achieved in in vitro and in vivo experiments. Conclusively, the nanobox offers a dynamic pH-sensitive confinement delivery system for siRNA and can be an extendable strategy for other small RNA.


Subject(s)
Lysosomes , Oligonucleotides , RNA, Small Interfering/chemistry
11.
Nano Lett ; 22(4): 1759-1768, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35138113

ABSTRACT

Severe acute pancreatitis (SAP) is an inflammatory disease of the pancreas accompanied by tissue injury and necrosis. It not only affects the pancreas but also triggers a systemic inflammatory response that leads to multiorgan failure or even death. Moreover, there is no effective treatment currently that can reverse the disease progression. In this study, tetrahedral framework nucleic acids (tFNAs) were utilized to treat SAP in mice for the first time and proved to be effective in suppressing inflammation and preventing pathological cell death. Serum levels of pancreatitis-related biomarkers witnessed significant changes after tFNAs treatment. Reduction in the expression of certain cytokines involved in local and systemic inflammatory response were observed, together with alteration in proteins related to cell death and apoptosis. Collectively, our results demonstrate that tFNAs could both alleviate SAP and its subsequent multiorgan injury in mice, thus offering a novel and effective option to deal with SAP in the future.


Subject(s)
Nucleic Acids , Pancreatitis , Acute Disease , Animals , Mice , Nucleic Acids/therapeutic use , Pancreas/metabolism , Pancreas/pathology , Pancreatitis/chemically induced , Pancreatitis/complications , Pancreatitis/drug therapy , Taurocholic Acid/adverse effects
12.
ACS Nano ; 16(1): 1456-1470, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34967217

ABSTRACT

Ischemic stroke is a main cause of cognitive neurological deficits and disability worldwide due to a plethora of neuronal apoptosis. Unfortunately, numerous neuroprotectants for neurons have failed because of biological toxicity, severe side effects, and poor efficacy. Tetrahedral framework nucleic acids (tFNAs) possess excellent biocompatibility and various biological functions. Here, we tested the efficacy of a tFNA for providing neuroprotection against neuronal apoptosis in ischemic stroke. The tFNA prevented apoptosis of neurons (SHSY-5Y cells) caused by oxygen-glucose deprivation/reoxygenation through interfering with ischemia cascades (excitotoxicity and oxidative stress) in vitro. It effectively ameliorated the microenvironment of the ischemic hemisphere by upregulating expression of erythropoietin and inhibiting inflammation, which reversed neuronal loss, alleviated cell apoptosis, significantly shrank the infarction volume from 33.9% to 2.7%, and attenuated neurological deficits in transient middle cerebral artery occlusion (tMCAo) rat models in vivo. In addition, blocking the TLR2-MyD88-NF-κB signaling pathway is a potential mechanism of the neuroprotection by tFNA in ischemic stroke. These findings indicate that tFNA is a safe pleiotropic nanoneuroprotectant and a promising therapeutic strategy for ischemic stroke.


Subject(s)
Brain Ischemia , Ischemic Stroke , Nanostructures , Neuroprotective Agents , Stroke , Rats , Animals , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Toll-Like Receptor 2 , Ischemic Stroke/drug therapy , Signal Transduction , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Apoptosis , DNA/therapeutic use , Brain Ischemia/drug therapy , Stroke/drug therapy
13.
ACS Appl Mater Interfaces ; 13(43): 50802-50811, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34665600

ABSTRACT

Type 1 diabetes (T1D) is caused by breakdowns of central and peripheral immune tolerance and destructions of insulin-producing ß-cells. Conventional insulin injection cannot cure the disease. Regulatory immune cells, including regulatory T-cells (Tregs) and regulatory B-cells (Bregs), play critical roles in immune tolerance. Inducing regulatory immune cells to halt the progress of T1D and restore immune tolerance is the promising approach in T1D immunotherapy. Here, tetrahedral framework nucleic acids (tFNAs) were utilized to treat T1D in non-obese diabetic (NOD) mice. 250 nM tFNA treatment was adopted in the experiment to reverse hyperglycemia and protect insulin-secreting ß-cells in diabetic NOD mice. In addition, 250 nM tFNA treatment could induce Tregs and Bregs and suppress helper T (Th)-cells in the pancreas. In the pancreas, cytokines, as a significant signal during CD4+ T-cell differentiation, directly direct the differentiation programs. Apart from cytokines directing the differentiation of T-cells, the signal transducer and activator of transcription (STAT) signal is strongly associated with T-cell differentiation and T1D progression. We demonstrated tFNA treatment inducing regulatory immune cells probably by increasing TGF-ß levels and the STAT signal. To sum up, 250 nM tFNA treatment could protect the diabetic NOD mice from hyperglycemia and preserve the functions of ß-cells by restoring peripheral immune tolerance. The possible mechanism of inducing immune tolerance was related to the STAT signal and cytokine changes in the pancreas. Moreover, immunoregulation capabilities of tFNAs were demonstrated in the experiment, which set the foundation of tFNAs participating in further antigen-specific immunotherapies.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Nucleic Acids/therapeutic use , Animals , Diabetes Mellitus, Type 1/immunology , Female , Immune Tolerance/drug effects , Immune Tolerance/immunology , Immunotherapy , Injections, Intravenous , Mice , Mice, Inbred ICR , Mice, Inbred NOD , Nucleic Acids/administration & dosage , Nucleic Acids/chemistry
14.
ACS Appl Mater Interfaces ; 13(36): 42543-42553, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34477358

ABSTRACT

As one of the most frequent autoimmune diseases, Sjogren's syndrome (SS) is characterized by overactive lymphocytic infiltration in the exocrine glands, with ensuing dry mouth and dry eyes. Unfortunately, so far, there are no appropriate therapies without causing overall immunosuppression. Tetrahedral framework nucleic acids (tFNAs) were regarded as promising nanoscale materials whose immunomodulatory capabilities have already been verified. Herein, we reveal, for the first time, that tFNAs were utilized to treat SS in female nonobese diabetic (NOD) mice, the animal model used for SS. We proved a 250 nM tFNA treatment was successful in suppressing inflammation and stimulating saliva secretion in NOD mice. Specialised proteins for the secretory function and structure of acinar cells in submandibular glands (SMGs) were restored. It has been the permanent goal for SS treatment to establish immune tolerance and stop disease development. Surprisingly, tFNA treatment guided T cells toward regulatory T cells (Tregs), while suppressing T helper (Th) cell responses. Th cells include Th1, Th17, and follicular helper T (Tfh) cells. Tregs are highly significant in immune tolerance. Inducing Tregs is a promising approach to reestablish immune tolerance. Comparable results were also observed in B cell responses. Reductions in the percentage of germinal center (GC) B cells and plasma cells were detected, and a marked increase in the percentage of regulatory B cells (Bregs) was also noticed. The mechanisms of inducing Tregs may associated with cytokine changes. Changes of T cell subsets, especially changes of Tfh, may influence the differentiation of B cells accordingly. Collectively, our results demonstrated the immunomodulatory capacities of tFNAs once again, which may provide a novel, safe, and effective option for the treatment of SS and other autoimmune diseases.


Subject(s)
Immune Tolerance/drug effects , Immunologic Factors/therapeutic use , Nucleic Acids/therapeutic use , Saliva/metabolism , Sjogren's Syndrome/drug therapy , Animals , B-Lymphocytes/drug effects , Base Sequence , Cell Differentiation/drug effects , Female , Mice, Inbred NOD , Nucleic Acid Conformation , T-Lymphocytes, Regulatory/drug effects
16.
ACS Appl Mater Interfaces ; 13(34): 40354-40364, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34410099

ABSTRACT

Insulin resistance (IR) is one of the essential conditions in the development of type 2 diabetes mellitus (T2DM). IR occurs in hepatic cells when the insulin receptor substrate-1 (IRS-1)/phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway is downregulated; thus, activating this pathway can significantly improve insulin sensitivity and ameliorate T2DM. Tetrahedral framework nucleic acids (tFNAs), a DNA nanomaterial, are synthesized from four single-stranded DNA molecules. tFNAs possess excellent biocompatibility and good water solubility and stability. tFNAs can promote cell proliferation, cell autophagy, wound healing, and nerve regeneration by activating the PI3K/Akt pathway. Herein, we explore the effects and underlying mechanisms of tFNAs on IR. The results displayed that tFNAs could increase glucose uptake and ameliorate IR by activating the IRS-1/PI3K/Akt pathway in glucosamine (GlcN)-stimulated HepG2 cells. By employing a PI3K inhibitor, we confirmed that tFNAs reduce IR through the PI3K/Akt pathway. Moreover, tFNAs can promote hepatic cell proliferation and inhibit GlcN-induced cell apoptosis. In a T2DM mouse model, tFNAs reduce blood glucose levels and ameliorate hepatic IR via the PI3K/Akt pathway. Taken together, tFNAs can improve hepatic IR and alleviate T2DM through the PI3K/Akt pathway, making contribution to the potential application of tFNAs in T2DM.


Subject(s)
DNA, Single-Stranded/therapeutic use , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Insulin Resistance/physiology , Signal Transduction/drug effects , Animals , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/pharmacology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Hep G2 Cells , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Insulin Receptor Substrate Proteins/metabolism , Liver/drug effects , Liver/pathology , Mice, Inbred C57BL , Nucleic Acid Conformation , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism
17.
Nanomicro Lett ; 13(1): 86, 2021 Mar 06.
Article in English | MEDLINE | ID: mdl-34138319

ABSTRACT

Obesity-induced insulin resistance is the hallmark of metabolic syndrome, and chronic, low-grade tissue inflammation links obesity to insulin resistance through the activation of tissue-infiltrating immune cells. Current therapeutic approaches lack efficacy and immunomodulatory capacity. Thus, a new therapeutic approach is needed to prevent chronic inflammation and alleviate insulin resistance. Here, we synthesized a tetrahedral framework nucleic acid (tFNA) nanoparticle that carried resveratrol (RSV) to inhibit tissue inflammation and improve insulin sensitivity in obese mice. The prepared nanoparticles, namely tFNAs-RSV, possessed the characteristics of simple synthesis, stable properties, good water solubility, and superior biocompatibility. The tFNA-based delivery ameliorated the lability of RSV and enhanced its therapeutic efficacy. In high-fat diet (HFD)-fed mice, the administration of tFNAs-RSV ameliorated insulin resistance by alleviating inflammation status. tFNAs-RSV could reverse M1 phenotype macrophages in tissues to M2 phenotype macrophages. As for adaptive immunity, the prepared nanoparticles could repress the activation of Th1 and Th17 and promote Th2 and Treg, leading to the alleviation of insulin resistance. Furthermore, this study is the first to demonstrate that tFNAs, a nucleic acid material, possess immunomodulatory capacity. Collectively, our findings demonstrate that tFNAs-RSV alleviate insulin resistance and ameliorate inflammation in HFD mice, suggesting that nucleic acid materials or nucleic acid-based delivery systems may be a potential agent for the treatment of insulin resistance and obesity-related metabolic diseases.

18.
Nano Lett ; 21(10): 4437-4446, 2021 05 26.
Article in English | MEDLINE | ID: mdl-33955221

ABSTRACT

A failure in immune tolerance leads to autoimmune destruction of insulin-producing ß-cells, leading to type 1 diabetes (T1D). Inhibiting autoreactive T cells and inducing regulatory T cells (Tregs) to re-establish immune tolerance are promising approaches to prevent the onset of T1D. Here, we investigated the ability of tetrahedral framework nucleic acids (tFNAs) to induce immune tolerance and prevent T1D in nonobese diabetic (NOD) mice. In prediabetic NOD mice, tFNAs treatment led to maintenance of normoglycemia and reduced incidence of diabetes. Moreover, the tFNAs (250 nM) treatment preserved the mass and function of ß-cells, increased the frequency of Tregs, and suppressed autoreactive T cells, leading to immune tolerance. Collectively, our results demonstrate that tFNAs treatment aids glycemic control, provides ß-cell protection, and prevents the onset of T1D in NOD mice by immunomodulation. These results highlight the potential of tFNAs for the prevention of autoimmune T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Nucleic Acids , Animals , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/prevention & control , Immune Tolerance , Mice , Mice, Inbred NOD , T-Lymphocytes, Regulatory
19.
Bioact Mater ; 6(6): 1676-1688, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33313447

ABSTRACT

Periodontitis is a common disease that causes periodontium defects and tooth loss. Controlling inflammation and tissue regeneration are two key strategies in the treatment of periodontitis. Tetrahedral framework nucleic acids can modulate multiple biological behaviors, and thus, their biological applications have been widely explored. In this study, we investigated the effect of tFNAs on periodontium under inflammatory conditions. Lipopolysaccharide and silk ligature were used to induce inflammation in vivo and in vitro. The results displayed that tFNAs decreased the release of pro-inflammatory cytokines and levels of cellular reactive oxygen species in periodontal ligament stem cells, which promoted osteogenic differentiation. Furthermore, animal experiments showed that tFNAs ameliorated the inflammation of the periodontium and protect periodontal tissue, especially reducing alveolar bone absorption by decreasing inflammatory infiltration and inhibiting osteoclast formation. These findings suggest that tFNAs can significantly improve the therapeutic effect of periodontitis and have the great potential significance in the field of periodontal tissue regeneration.

SELECTION OF CITATIONS
SEARCH DETAIL
...