Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Water Res ; 223: 118958, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35994786

ABSTRACT

Large cyanobacterial colonies, which are unique niches for heterotrophic bacteria, are vital for blooming in eutrophic waters. However, the seasonal dynamics of molecular insights into microbes in these colonies remain unclear. Here, the community composition and metabolism pattern of microbes inhabiting large cyanobacterial colonies (> 120 µm, collected from Lake Taihu in China) were investigated monthly. The community structure of total microbes was mostly influenced by chlorophyll a (Chl a), total phosphorus (TP) concentration, dissolved oxygen, and temperature, whereas the colony-associated bacteria (excluding Cyanobacteria) were mostly influenced by total organic carbon, NO3-, and PO43- concentrations, indicating different response patterns of Cyanobacteria and the associated bacteria to water nutrient conditions. Metatranscriptomic data suggested that similar to that of Cyanobacteria, the gene expression patterns of the most active bacteria, such as Proteobacteria and Bacteroidetes, were not strictly dependent on season but separated by Chl a concentrations. Samples in July and September (high-bloom period) and February and March (non-bloom period) formed two distinct clusters, whereas those of other months (low-bloom period) clustered together. The accumulation of transcripts for pathways, such as phycobilisome from Cyanobacteria and bacterial chemotaxis and flagellum, phosphate metabolism, and sulfur oxidation from Proteobacteria, was enriched in high- and low-bloom periods than in non-bloom period. Network analyses revealed that Cyanobacteria and Proteobacteria exhibited coordinated transcriptional patterns in almost all divided modules. Modules had Cyanobacteria-dominated hub gene were positively correlated with temperature, Chl a, total dissolved phosphorus, and NH4+ and NO2- concentrations, whereas modules had Proteobacteria-dominated hub gene were positively correlated with TP and PO43-. These results indicated labor division might exist in the colonies. This study provided metabolic insights into microbes in large cyanobacterial colonies and would support the understanding and management of the year-round cyanobacterial blooms.


Subject(s)
Cyanobacteria , Water Microbiology , Carbon , Chlorophyll A , Cyanobacteria/genetics , Environmental Monitoring , Eutrophication , Gene Expression Regulation, Bacterial , Lakes , Phycobilisomes/genetics , Proteobacteria/genetics
2.
Environ Microbiol ; 24(10): 4931-4945, 2022 10.
Article in English | MEDLINE | ID: mdl-35837847

ABSTRACT

Microcystis spp., notorious bloom-forming cyanobacteria, are often present in colony form in eutrophic lakes worldwide. Uncovering the mechanisms underlying Microcystis colony formation and maintenance is vital to controlling the blooms, but it has long been a challenge. Here, bacterial communities and gene expression patterns of colonial and unicellular forms of one non-axenic strain of Microcystis aeruginosa isolated from Lake Taihu were compared. Evidently, different microbial communities between them were observed through 16S rDNA MiSeq sequencing. Metatranscriptome analyses revealed that transcripts for pathways involved in bacterial biofilm formation, such as biosynthesis of peptidoglycan and arginine by Bacteroidetes, methionine biosynthesis, alginate metabolism, flagellum, and motility, as well as widespread colonization islands by Proteobacteria, were highly enriched in the colonial form. Furthermore, transcripts for nitrogen fixation and denitrification pathways by Proteobacteria that usually occur in biofilms were significantly enriched in the colonial Microcystis. Results revealed that microbes associated with Microcystis colonies play important roles through regulation of biofilm-related genes in colony formation and maintenance. Moreover, Microcystis colony represents a potential 'buoyant particulate biofilm', which is a good model for biofilm studies. The biofilm features of colonial Microcystis throw a new light on management and control of the ubiquitous blooms in eutrophic waters.


Subject(s)
Microcystis , Alginates/metabolism , Arginine/metabolism , Biofilms , DNA, Ribosomal , Gene Expression , Lakes/microbiology , Methionine/genetics , Methionine/metabolism , Microbial Consortia , Microcystis/metabolism , Peptidoglycan/metabolism
3.
Microbiologyopen ; 7(6): e00608, 2018 12.
Article in English | MEDLINE | ID: mdl-29573241

ABSTRACT

Worldwide cyanobacterial blooms greatly impair ecosystems in many eutrophic lakes and impact the microbial environment. In particular, large cyanobacterial colonies that are buoyant on the water surface may provide a distinct habitat for bacteria from other small particles that are suspended stably in the water column. To test this hypothesis, bacterial communities (excluding cyanobacteria) attached to large particles dominated by cyanobacterial colonies (>120 µm, LA), small particles (3-36 µm, SA), and free-living bacteria (0.2-3 µm, FL) were investigated monthly for a year in Lake Taihu, China. Results confirmed that the Shannon diversity index of LA was significantly lower than that of FL, which was lower than that of SA. Cytophagia and Alphaproteobacteria were specially enriched in LA. Although samples in each habitat collected during high- (May to November) and low-bloom seasons (December to April) were separated, all samples in LA were clustered and separated from SA and FL, which were also clustered during the same sampling seasons. In addition, the bacterial communities in LA were correlated with nitrate level, whereas FL and SA were correlated with nitrate level and temperature. Mantel analysis revealed that bacterial composition significantly correlated with the cyanobacterial composition in LA and FL but not in SA. These results indicate that LA provides distinct niches to bacteria, whereas the differentiation of bacterial communities in FL and SA is seasonally dependent.


Subject(s)
Cyanobacteria/growth & development , Cyanobacteria/isolation & purification , Lakes/microbiology , Biodiversity , China , Cyanobacteria/classification , Cyanobacteria/genetics , Lakes/chemistry , Phylogeny , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...