Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Aging ; 4(7): 998-1013, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38816550

ABSTRACT

Organismal aging involves functional declines in both somatic and reproductive tissues. Multiple strategies have been discovered to extend lifespan across species. However, how age-related molecular changes differ among various tissues and how those lifespan-extending strategies slow tissue aging in distinct manners remain unclear. Here we generated the transcriptomic Cell Atlas of Worm Aging (CAWA, http://mengwanglab.org/atlas ) of wild-type and long-lived strains. We discovered cell-specific, age-related molecular and functional signatures across all somatic and germ cell types. We developed transcriptomic aging clocks for different tissues and quantitatively determined how three different pro-longevity strategies slow tissue aging distinctively. Furthermore, through genome-wide profiling of alternative polyadenylation (APA) events in different tissues, we discovered cell-type-specific APA changes during aging and revealed how these changes are differentially affected by the pro-longevity strategies. Together, this study offers fundamental molecular insights into both somatic and reproductive aging and provides a valuable resource for in-depth understanding of the diversity of pro-longevity mechanisms.


Subject(s)
Aging , Caenorhabditis elegans , Longevity , Transcriptome , Longevity/genetics , Animals , Aging/genetics , Aging/physiology , Caenorhabditis elegans/genetics , Polyadenylation/genetics , Organ Specificity , Gene Expression Profiling , Germ Cells/metabolism , Germ Cells/cytology
2.
Elife ; 132024 Jan 19.
Article in English | MEDLINE | ID: mdl-38240316

ABSTRACT

Lysosomes are active sites to integrate cellular metabolism and signal transduction. A collection of proteins associated with the lysosome mediate these metabolic and signaling functions. Both lysosomal metabolism and lysosomal signaling have been linked to longevity regulation; however, how lysosomes adjust their protein composition to accommodate this regulation remains unclear. Using deep proteomic profiling, we systemically profiled lysosome-associated proteins linked with four different longevity mechanisms. We discovered the lysosomal recruitment of AMP-activated protein kinase and nucleoporin proteins and their requirements for longevity in response to increased lysosomal lipolysis. Through comparative proteomic analyses of lysosomes from different tissues and labeled with different markers, we further elucidated lysosomal heterogeneity across tissues as well as the increased enrichment of the Ragulator complex on Cystinosin-positive lysosomes. Together, this work uncovers lysosomal proteome heterogeneity across multiple scales and provides resources for understanding the contribution of lysosomal protein dynamics to signal transduction, organelle crosstalk, and organism longevity.


Subject(s)
Lysosomes , Proteomics , Lysosomes/metabolism , Intracellular Membranes/metabolism , Proteome/metabolism , Signal Transduction
3.
Dev Cell ; 58(23): 2718-2731.e7, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37708895

ABSTRACT

Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP (mtGTP) metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS) promotes reproductive longevity in Caenorhabditis elegans. We further identified an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mtGTP levels and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mtGTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and identify mitochondrial fission induction as an effective strategy to improve reproductive health.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Mitochondria/metabolism , Aging , Reproduction , Caenorhabditis elegans Proteins/metabolism , Longevity , Guanosine Triphosphate/metabolism , Mitochondrial Dynamics
4.
bioRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066227

ABSTRACT

Healthy mitochondria are critical for reproduction. During aging, both reproductive fitness and mitochondrial homeostasis decline. Mitochondrial metabolism and dynamics are key factors in supporting mitochondrial homeostasis. However, how they are coupled to control reproductive health remains unclear. We report that mitochondrial GTP metabolism acts through mitochondrial dynamics factors to regulate reproductive aging. We discovered that germline-only inactivation of GTP- but not ATP-specific succinyl-CoA synthetase (SCS), promotes reproductive longevity in Caenorhabditis elegans. We further revealed an age-associated increase in mitochondrial clustering surrounding oocyte nuclei, which is attenuated by the GTP-specific SCS inactivation. Germline-only induction of mitochondrial fission factors sufficiently promotes mitochondrial dispersion and reproductive longevity. Moreover, we discovered that bacterial inputs affect mitochondrial GTP and dynamics factors to modulate reproductive aging. These results demonstrate the significance of mitochondrial GTP metabolism in regulating oocyte mitochondrial homeostasis and reproductive longevity and reveal mitochondrial fission induction as an effective strategy to improve reproductive health.

5.
bioRxiv ; 2023 Mar 18.
Article in English | MEDLINE | ID: mdl-36909655

ABSTRACT

Organism aging occurs at the multicellular level; however, how pro-longevity mechanisms slow down aging in different cell types remains unclear. We generated single-cell transcriptomic atlases across the lifespan of Caenorhabditis elegans under different pro-longevity conditions (http://mengwanglab.org/atlas). We found cell-specific, age-related changes across somatic and germ cell types and developed transcriptomic aging clocks for different tissues. These clocks enabled us to determine tissue-specific aging-slowing effects of different pro-longevity mechanisms, and identify major cell types sensitive to these regulations. Additionally, we provided a systemic view of alternative polyadenylation events in different cell types, as well as their cell-type-specific changes during aging and under different pro-longevity conditions. Together, this study provides molecular insights into how aging occurs in different cell types and how they respond to pro-longevity strategies.

6.
Trends Biochem Sci ; 45(11): 978-991, 2020 11.
Article in English | MEDLINE | ID: mdl-32624271

ABSTRACT

Lysosomes transcend the role of degradation stations, acting as key nodes for interorganelle crosstalk and signal transduction. Lysosomes communicate with the nucleus through physical proximity and functional interaction. In response to external and internal stimuli, lysosomes actively adjust their distribution between peripheral and perinuclear regions and modulate lysosome-nucleus signaling pathways; in turn, the nucleus fine-tunes lysosomal biogenesis and functions through transcriptional controls. Changes in coordination between these two essential organelles are associated with metabolic disorders, neurodegenerative diseases, and aging. In this review, we address recent advances in lysosome-nucleus communication by multi-tiered regulatory mechanisms and discuss how these regulations couple metabolic inputs with organellar motility, cellular signaling, and transcriptional network.


Subject(s)
Cell Nucleus/metabolism , Lysosomes/metabolism , Animals , Cell Nucleus/chemistry , Cell Nucleus/genetics , Gene Regulatory Networks , Humans , Lysosomes/chemistry , Lysosomes/genetics , Signal Transduction
7.
BMC Genomics ; 21(1): 364, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32414326

ABSTRACT

BACKGROUND: The computational prediction of methylation levels at single CpG resolution is promising to explore the methylation levels of CpGs uncovered by existing array techniques, especially for the 450 K beadchip array data with huge reserves. General prediction models concentrate on improving the overall prediction accuracy for the bulk of CpG loci while neglecting whether each locus is precisely predicted. This leads to the limited application of the prediction results, especially when performing downstream analysis with high precision requirements. RESULTS: Here we reported PretiMeth, a method for constructing precise prediction models for each single CpG locus. PretiMeth used a logistic regression algorithm to build a prediction model for each interested locus. Only one DNA methylation feature that shared the most similar methylation pattern with the CpG locus to be predicted was applied in the model. We found that PretiMeth outperformed other algorithms in the prediction accuracy, and kept robust across platforms and cell types. Furthermore, PretiMeth was applied to The Cancer Genome Atlas data (TCGA), the intensive analysis based on precise prediction results showed that several CpG loci and genes (differentially methylated between the tumor and normal samples) were worthy for further biological validation. CONCLUSION: The precise prediction of single CpG locus is important for both methylation array data expansion and downstream analysis of prediction results. PretiMeth achieved precise modeling for each CpG locus by using only one significant feature, which also suggested that our precise prediction models could be probably used for reference in the probe set design when the DNA methylation beadchip update. PretiMeth is provided as an open source tool via https://github.com/JxTang-bioinformatics/PretiMeth.


Subject(s)
DNA Methylation , Epigenomics/methods , Models, Genetic , CpG Islands/genetics , Genetic Loci/genetics , Genome/genetics , Humans , Logistic Models , Neoplasms/genetics , Sequence Analysis, DNA
8.
Nat Commun ; 11(1): 1450, 2020 03 19.
Article in English | MEDLINE | ID: mdl-32193370

ABSTRACT

Olfactory and metabolic dysfunctions are intertwined phenomena associated with obesity and neurodegenerative diseases; yet how mechanistically olfaction regulates metabolic homeostasis remains unclear. Specificity of olfactory perception integrates diverse environmental odors and olfactory neurons expressing different receptors. Here, we report that specific but not all olfactory neurons actively regulate fat metabolism without affecting eating behaviors in Caenorhabditis elegans, and identified specific odors that reduce fat mobilization via inhibiting these neurons. Optogenetic activation or inhibition of the responsible olfactory neural circuit promotes the loss or gain of fat storage, respectively. Furthermore, we discovered that FLP-1 neuropeptide released from this olfactory neural circuit signals through peripheral NPR-4/neuropeptide receptor, SGK-1/serum- and glucocorticoid-inducible kinase, and specific isoforms of DAF-16/FOXO transcription factor to regulate fat storage. Our work reveals molecular mechanisms underlying olfactory regulation of fat metabolism, and suggests the association between olfactory perception specificity of each individual and his/her susceptibility to the development of obesity.


Subject(s)
Feeding Behavior/physiology , Lipid Metabolism/physiology , Neurosecretory Systems/metabolism , Obesity/metabolism , Olfactory Perception/physiology , Animals , Animals, Genetically Modified , Butanones/chemistry , Caenorhabditis elegans , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Disease Models, Animal , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Humans , Neurons/metabolism , Neuropeptides/metabolism , Odorants , Optogenetics , Protein Serine-Threonine Kinases/metabolism , Receptors, Neuropeptide/metabolism
9.
Elife ; 72018 09 04.
Article in English | MEDLINE | ID: mdl-30176986

ABSTRACT

The correct establishment and maintenance of unidirectional Notch signaling are critical for the homeostasis of various stem cell lineages. However, the molecular mechanisms that prevent cell-autonomous ectopic Notch signaling activation and deleterious cell fate decisions remain unclear. Here we show that the retromer complex directly and specifically regulates Notch receptor retrograde trafficking in Drosophila neuroblast lineages to ensure the unidirectional Notch signaling from neural progenitors to neuroblasts. Notch polyubiquitination mediated by E3 ubiquitin ligase Itch/Su(dx) is inherently inefficient within neural progenitors, relying on retromer-mediated trafficking to avoid aberrant endosomal accumulation of Notch and cell-autonomous signaling activation. Upon retromer dysfunction, hypo-ubiquitinated Notch accumulates in Rab7+ enlarged endosomes, where it is ectopically processed and activated in a ligand-dependent manner, causing progenitor-originated tumorigenesis. Our results therefore unveil a safeguard mechanism whereby retromer retrieves potentially harmful Notch receptors in a timely manner to prevent aberrant Notch activation-induced neural progenitor dedifferentiation and brain tumor formation.


Subject(s)
Carcinogenesis/metabolism , Drosophila Proteins/metabolism , Multiprotein Complexes/metabolism , Neural Stem Cells/metabolism , Receptors, Notch/metabolism , Animals , Carcinogenesis/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Endosomes/metabolism , HEK293 Cells , Humans , Multiprotein Complexes/genetics , Mutation , Protein Binding , Protein Transport , Receptors, Notch/genetics , Vesicular Transport Proteins/genetics , Vesicular Transport Proteins/metabolism
10.
Dev Cell ; 40(6): 537-551.e6, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28350987

ABSTRACT

Asymmetric stem cell division establishes an initial difference between a stem cell and its differentiating sibling, critical for maintaining homeostasis and preventing carcinogenesis. Yet the mechanisms that consolidate and lock in such initial fate bias remain obscure. Here, we use Drosophila neuroblasts to demonstrate that the super elongation complex (SEC) acts as an intrinsic amplifier to drive cell fate commitment. SEC is highly expressed in neuroblasts, where it promotes self-renewal by physically associating with Notch transcription activation complex and enhancing HES (hairy and E(spl)) transcription. HES in turn upregulates SEC activity, forming an unexpected self-reinforcing feedback loop with SEC. SEC inactivation leads to neuroblast loss, whereas its forced activation results in neural progenitor dedifferentiation and tumorigenesis. Our studies unveil an SEC-mediated intracellular amplifier mechanism in ensuring robustness and precision in stem cell fate commitment and provide mechanistic explanation for the highly frequent association of SEC overactivation with human cancers.


Subject(s)
Cell Lineage , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Neural Stem Cells/cytology , Neural Stem Cells/metabolism , Animals , Cell Dedifferentiation , Cell Self Renewal , Drosophila melanogaster/genetics , Female , Genes, Insect , Male , Protein Binding , Protein Subunits/metabolism , Receptors, Notch/metabolism , Signal Transduction , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...