Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Chemosphere ; 358: 142165, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38704048

ABSTRACT

Expanded polystyrene (EPS) plastic is widely used because of its low density and lightweight properties, enabling it to float on water and increase its exposure to sunlight. In this study, we simulated the photoaging process of flame retardant-added EPS (FR-EPS) and common original EPS (OR-EPS) microplastic (MP) particles with and without methyl octabromoether flame retardant (MOBE) in the laboratory to explore the effect of MOBE on the photodegradation of EPS. Results showed that MOBE accelerated size reduction and surface hole formation on the particles, hastening the shedding and replacement of particle surfaces. FR-EPS particles exhibited a weight loss exceeding that of OR-EPS, reaching 40.85 ± 3.72% after 36 days of irradiation. Moreover, rapid physical peeling of the FR-EPS surface was accompanied by continuous chemical oxidation and fluctuations of the carbonyl index and O/C ratio. A diffusion model based on Fick's second law fitted well for the concentration of MOBE remaining in FR-EPS particles. MOBE's sensitivity to direct photochemical reactions inhibited the early-stage photoaging of EPS MP particles by competing for photons. However, MOBE as chromophores could absorb photons and produce •OH to promote the aging of EPS. Moreover, the capacity of EPS to absorb light energy also accelerated MOBE degradation. These findings suggested that the photoaging behavior of commercial EPS products containing flame retardants in the environment is quite different from that of pure EPS, indicating that additive-plastic interactions significantly alter MP fate and environmental risks.


Subject(s)
Flame Retardants , Microplastics , Polystyrenes , Polystyrenes/chemistry , Microplastics/chemistry , Photolysis , Plastics/chemistry
2.
Chemosphere ; 360: 142359, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782133

ABSTRACT

The excessive usage and emissions of triclosan (TCS) pose a serious threat to aquatic environments. Iron-based bimetallic particles (Pd/Fe, Ni/Fe, and Cu/Fe, etc.) were widely used for the degradation of chlorophenol pollutants. This study proposed a novel synthesis method for the preparation of Ni/Fe bimetallic particles (Ni-Febm) by ball milling microscale zero valent iron ZVI (mZVI) and NiSO4. Ball-milling conditions such as ball-milling time, ball-milling speed and ball-to-powder ratio were optimized to prepare high activity Ni-Febm bimetallic particles. During the ball-milling process, Ni2+ was reduced to Ni0 and formed a coupled structure with ZVI. The amount of Ni0 on ZVI significantly affected the activity of Ni-Febm bimetallic particles. The highest activity Ni-Febm bimetallic particles with Ni/Fe ratio of 0.03 were synthesized under optimized conditions, which could remove 86.56% of TCS (10 µM) in aerobic aqueous solution within 60 min. In addition, higher particle dosage, lower pH condition and higher reaction temperature were more conducive for TCS degradation. The higher corrosion current and lower electron transfer impedance of Ni-Febm bimetallic particles were the main reasons for its high activity. The hydrogen atom (•H) on the surface of Ni-Febm bimetallic particles was mainly contributed to the removal of TCS, as reductive transformation products of TCS were detected by LC-TOF-MS. Notably, a small amount of oxidation products were discovered. The total dechlorination rate of TCS was calculated to be 39.67%. After eight reaction cycles, the residual Ni-Febm bimetallic particles could still degrade 28.34% of TCS within 6 h. Low Ni2+ leaching during reaction indicated that Ni-Febm bimetallic particles did not pose potential environmental risks. The prepared environmental-friendly Ni-Febm bimetallic particles with high activity have great potential in the degradation of other chlorinated organic compounds in wastewater.

3.
Water Res ; 256: 121573, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38608618

ABSTRACT

Sulfidated zero valent iron (ZVI) is a popular material for the reductive degradation of halogenated organic pollutants. Simple and economic synthesis of this material is highly demanded. In this study, sulfidated micro/nanostructured ZVI (MNZVI) particles were prepared by simply heating MNZVI particles and sulfur elements (S0) in pure water (50℃). The iron oxides on the surface of MNZVI particles were conducive to sulfidation reaction, indicating the formation of iron-sulphide minerals (FeSx) on the surface of MNZVI particles might not be from the direct reaction of Fe0 with S0 (Fe0 and S0 acted as reductant and oxidant, respectively). As an important reductant, hydrogen atom (H•) can be generated from the reduction of H+ by MNZVI particles and participate in the formation of FeSx. Quenching experiment and cyclic voltammetry analysis proved the existence of H• on the surface of MNZVI particles. DFT calculation found that the potential barrier of H•/S0 and Fe0/S0 were 1.91 and 7.24 eV, respectively, indicating that S0 would preferentially react with H• instead of Fe0. The formed H• can quickly react with S0 to generate hydrogen sulfide (H2S), which can further react with iron oxides such as α-Fe2O3 on the surface of MNZVI particles to form FeSx. In addition, the H2 partial pressure in water significantly affected the amount of H• generated, thereby affecting the sulfidation efficiency. For TCE degradation, as the sulfur loading of sulfidated MNZVI particles increased, the contribution of H• significantly decreased while the contribution of direct electron transfer increased. This study provided new insights into the synthesis mechanism of sulfidated ZVI in water.


Subject(s)
Hydrogen , Iron , Hydrogen/chemistry , Iron/chemistry , Oxidation-Reduction
4.
J Hazard Mater ; 470: 134106, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38552399

ABSTRACT

In the environment, tire wear particles (TWPs) could release various additives to induce potential risk, while the effects of particle size on the additive release behavior and ecological risk from TWPs remain unknown. This study investigated the effects and mechanisms of particle sizes (>2 mm, 0.71-1 mm, and <0.1 mm) on the release behavior of TWPs additives under mechanical abrasion and UV irradiation in water. Compared to mechanical abrasion, UV irradiation significantly increased the level of additives released from TWPs. Especially, the additive releasing characteristics were critically affected by the particle sizes of TWPs, manifested as the higher release in the smaller-size ones. After 60 d of UV irradiation, the concentration of antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) reached 10.79 mg/L in the leachate of small-sized TWPs, 2.78 and 5.36 times higher than that of medium-sized and large-sized TWPs. The leachate of the small-sized TWPs also showed higher cytotoxicity. •OH and O2•- were identified as the main reactive oxygen species (ROS), which exhibited higher concentrations and dramatic attack on small-sized TWPs to cause pronounced fragmentation and oxidation, finally inducing the higher release of additives. This paper sheds light on the crucial effects and mechanism of particle sizes in the release behavior of TWPs additives, provides useful information to assess the ecological risk of TWPs.

5.
Chemosphere ; 352: 141442, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346516

ABSTRACT

Most previous studies have focused primarily on the adverse effects of environmental chemicals on organisms of good healthy. Although global prevalence of non-alcoholic fatty liver disease (NAFLD) has reached approximately 25%, the impact of environmentally persistent organic chemicals on organisms with NAFLD is substantially unknown. Polyhalogenated carbazoles (PHCZs) as emerging contaminants have been frequently detected in the environment and organisms. In this study, we investigated the impact of the most frequently detected PHCZs, 3,6-dichlorocarbazole (36-CCZ), on zebrafish with high-fat diet (HFD)-induced NAFLD. After 4 weeks exposure to environmentally relevant concentrations of 36-CCZ (0.16-0.45 µg/L), the accumulation of lipid in zebrafish liver dramatically increased, and the transcription of genes involved in lipid synthesis, transport and oxidation was significantly upregulated, demonstrating that 36-CCZ had exacerbated the NAFLD in zebrafish. Lipidomic analysis indicated that 36-CCZ had significantly affected liver lipid metabolic pathways, mainly including glycerolipids and glycerophospholipids. Additionally, fifteen lipids were identified as potential lipid biomarkers for 36-CCZ exacerbation of NAFLD, including diacylglycerols (DGs), triglycerides (TGs), phosphatidylcholines (PCs), phosphatidylethanolamines (PEs), phosphatidic acid (PA), and phosphatidylinositol (PI). These findings demonstrate that long-term exposure to 36-CCZ can promote the progression of NAFLD, which will contribute to raising awareness of the health risks of PHCZs.


Subject(s)
Carbazoles , Non-alcoholic Fatty Liver Disease , Perciformes , Animals , Non-alcoholic Fatty Liver Disease/chemically induced , Zebrafish/metabolism , Lipid Metabolism , Liver/metabolism , Triglycerides/metabolism , Perciformes/metabolism , Biomarkers/metabolism , Diet, High-Fat
6.
J Hazard Mater ; 465: 133400, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38198871

ABSTRACT

The increasingly severe plastic pollution issue was intensified by the enormous plastic emissions into ecosystems during the Covid-19 pandemic. Plastic wastes entering the environment were swiftly exposed to microorganisms and colonized by biofilms, and the plastic-biofilm combined effects further influenced the ecosystem. However, the non-woven structure of disposable masks discarded carelessly during the COVID-19 pandemic was different from those of plastics with flat surface. To reveal the potential effects of plastic structure on colonized biofilms, white disposable surgical masks (DM) and transparent takeaway boxes (TB), both made of polyethylene, were selected for the incubation of organic conditioning films and biofilms. The results indicated that the non-woven structure of disposable mask was destroyed by the influence of water infiltration and biofilm colonization. The influence of surface structure on conditioning films led to a relatively higher proportion of tryptophan-like substances on DM than those on TB samples. Therefore, biofilms with significantly higher microbial biomass and carbon metabolic capacity were formed on DM than those on TB samples owing to the combined effects of their differences in surface structure and conditioning films. Moreover, abundant functional microorganisms associated with stress tolerance, carbon metabolism and biofilm formation were observed in biofilms on disposable mask. Combining with the results of partial least squares regression analysis, the selective colonization of functional microorganisms on disposable masks with uneven surface longitudinal fluctuation was revealed. Although the predicted functions of biofilms on disposable masks and takeaway boxes showed more similarity to each other than to those of free-living aquatic microorganisms owing to the existence of the plastisphere, biofilms on disposable masks may potentially trigger environmental risks different from those of takeaway boxes by unique carbon metabolism and abundant biomass.


Subject(s)
COVID-19 , Polypropylenes , Humans , Ecosystem , Masks , Pandemics , Biofilms , Carbon , Polyethylene , Plastics
7.
Environ Res ; 241: 117612, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37951380

ABSTRACT

This study systematically investigated the variable main electrooxidation mechanism of chlorophene (CP) and dichlorophen (DCP) with the change of reaction conditions at Ti4O7 anode operated in batch and reactive electrochemical membrane (REM) modes. Significant degradation of CP and DCP was observed, that is, CP exhibited greater removal efficiency in batch mode at 0.5-3.5 mA cm-2 and REM operation (0.5 mA cm-2) with a permeate flow rate of 0.85 cm min-1 under the same reaction conditions, while DCP exhibited a faster degradation rate with the increase of current density in REM operation. Density functional theory (DFT) simulation and electrochemical performance tests indicated that the electrooxidation efficiency of CP and DCP in batch mode was primarily affected by the mass transfer rates. And the removal efficiency when anodic potentials were less than 1.7 V vs SHE in REM operation was determined by the activation energy for direct electron transfer (DET) reaction, however, the adsorption function of CP and DCP on the Ti4O7 anode became a dominant factor in determining the degradation efficiency with the further increase of anodic potential due to the disappeared activation barrier. In addition, the degradation pathways of CP and DCP were proposed according to intermediate products identification and frontier electron densities (FEDs) calculation, the acute toxicity of CP and DCP were also effectively decreased during both batch and REM operations.


Subject(s)
Dichlorophen , Water Pollutants, Chemical , Adsorption , Oxidation-Reduction
8.
Aquat Toxicol ; 266: 106803, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103395

ABSTRACT

Although polyhalogenated carbazoles have been detected with increasing frequency in aquatic ecosystems, their bioaccumulation in fish and corresponding pathological effects related to bioaccumulation are still unclear. Here, we investigated the tissue-specific accumulation, depuration, and histopathological effects of two typical PHCZs, 3,6-dichlorocarbazole (36-CCZ) and 2,7-dibromocarbazole (27-BCZ), in adult zebrafish at three levels (0, 0.15 µg/L (5 × environmentally relevant level), and 50 µg/L (1/10 LC50). The lowest concentrations of 36-CCZ (1.2 µg/g ww) and 27-BCZ (1.4 µg/g ww) were observed in muscle, and the greatest concentrations of 36-CCZ (3.6 µg/g ww) and 27-BCZ (4 µg/g ww) were detected in intestine among the tested tissues. BCFww of 36-CCZ and 27-BCZ in zebrafish ranged from 172.9 (muscle) to 606.6 (intestine) and 285.2 (muscle) to 987.5 (intestine), respectively, indicating that both 36-CCZ and 27-BCZ have high potential of bioaccumulation in aquatic system. The 0.15 µg/L level of 36-CCZ or 27-BCZ caused lipid accumulation in liver, while 50 µg/L of 36-CCZ or 27-BCZ induced liver lesions such as fibrous septa, cytolysis, and nuclear dissolution. Brain damage such as multinucleated cells and nuclear solidification were only observed at 50 µg/L of 27-BCZ. This study provided valuable information in assessing the health and ecological risks of 36-CCZ and 27-BCZ.


Subject(s)
Perciformes , Water Pollutants, Chemical , Animals , Zebrafish , Ecosystem , Water Pollutants, Chemical/toxicity , Carbazoles/toxicity , Carbazoles/analysis
9.
J Hazard Mater ; 460: 132402, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37660624

ABSTRACT

The addition of a secondary metal (such as Cu, Co, Ni and Pd) to form iron-based bimetallic particles could enhance the reactivity of zero valent iron (ZVI). This study proposed a new synthesis method for preparing Cu-Fe bimetals (Cu-Febm (CuSO4)) by ball milling mZVI and CuSO4. During ball-milling process, 40% of Cu2+ can be reduced to Cu0, which formed galvanic couple with Fe0 in a way of Fe/Cu alloy structure. Part Cu2+ was only reduced to Cu+ (corresponding to Cu2O), while 29% of SO42- was reduced to Sx2- (corresponding to FeSx). The appearance of Cu2O was not conducive to the activity of Cu-Febm (CuSO4) particles, the formation of Fe0/FeSx structure compensated for the partial loss of Fe/Cu alloy. H•abs was identified as the main active species for TCE degradation by Cu-Febm (CuSO4) bimetals. The Cu-Febm (CuSO4) bimetals has great potential for the removal of chlorinated hydrocarbons in water.

10.
Environ Int ; 179: 108193, 2023 09.
Article in English | MEDLINE | ID: mdl-37703772

ABSTRACT

Microplastics residues in natural waters can adsorb organic contaminants owing to their rough surface morphology and high specific surface area, potentially harming human health when ingested. Although humans inevitably ingest microplastics, the bioaccessibility of microplastic-associated chemicals in the human gastric and intestinal fluids remains unresolved. This study investigated the mechanism and primary factor controlling the bioaccessibility of polypropylene (PP) microplastic fiber-associated tetracycline (TC) and ciprofloxacin (CIP) in simulated human gastrointestinal fluids. After mixing 0.1 g of PP microfiber with 10 mg/L of TC (or CIP) for 96 h and exposure to simulated human gastrointestinal fluids, the TC concentrations were 0.440, 0.678, and 1.840 mg/L and the CIP concentrations were 0.700, 1.367, and 3.281 mg/L CIP in the simulated human saliva, gastric, and intestinal fluids after incubation for 60 s, 4 h, and 8 h, respectively. This indicated that the antibiotics TC and CIP adsorbed onto microfiber surface are readily released into human gastrointestinal fluids upon ingestion. Gastric and intestinal fluids showed enhanced bioaccessibility to TC/CIP adhered to PP microfiber. The primary factors affecting the bioaccessibility to TC/CIP adhered to PP microfiber surfaces were found to be pepsin in human gastric fluid and trypsin in human intestinal fluid. Molecular docking and simulated molecular dynamic analyses results showed that pepsin and trypsin stablish connections with TC via hydrogen bonds (reaction sites: pepsin TC: T139, T136, S97, D94, D277 and Y251; trypsin TC: S257, H120, K235, G274, and G276) and CIP via hydrophobic interactions (reaction sites: pepsin CIP: Y137, T136, T139, F173, I362, V353, and I275; trypsin CIP: W273, I161, C253, and C277). Our findings highlight that microplastic ingestion increases the risk of microplastics and the co-contaminants adsorbed to human health; thus, these findings are helpful to assess the risk of microplastics and co-contaminants to human health.


Subject(s)
Ciprofloxacin , Microplastics , Humans , Plastics , Polypropylenes , Molecular Docking Simulation , Pepsin A , Trypsin , Anti-Bacterial Agents , Tetracycline
11.
Environ Sci Technol ; 57(40): 15255-15265, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37768274

ABSTRACT

Numerous studies have emphasized the toxicity of graphene-based nanomaterials to algae, however, the fundamental behavior and processes of graphene in biological hosts, including its transportation, metabolization, and bioavailability, are still not well understood. As photosynthetic organisms, algae are key contributors to carbon fixation and may play an important role in the fate of graphene. This study investigated the biological fate of 14C-labeled few-layer graphene (14C-FLG) in Chlamydomonas reinhardtii (C. reinhardtii). The results showed that 14C-FLG was taken up by C. reinhardtii and then translocated into its chloroplast. Metabolomic analysis revealed that 14C-FLG altered the metabolic profiles (including sugar metabolism, fatty acid, and tricarboxylic acid cycle) of C. reinhardtii, which promoted the photosynthesis of C. reinhardtii and then enhanced their growth. More importantly, the internalized 14C-FLG was metabolized into 14CO2, which was then used to participate in the metabolic processes required for life. Approximately 61.63%, 25.31%, and 13.06% of the total radioactivity (from 14CO2) was detected in carbohydrates, lipids, and proteins of algae, respectively. Overall, these results reveal the role of algae in the fate of graphene and highlight the potential of available graphene in bringing biological effects to algae, which helps to better assess the environmental risks of graphene.

12.
J Hazard Mater ; 460: 132350, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37619279

ABSTRACT

Microplastics (MPs) in the environment are always colonized by microbes, which may have implications for carrying effect of pollutants and exposure risk in organisms. We present the crucial impacts and mechanisms of microbial colonization on the bioaccessibility and toxicity of Pb(II) loaded in disposable box-derived polypropylene (PP) and polystyrene (PS) MPs and montmorillonite (MMT) clay particles. After 45 d incubation, higher biomass measured by crystal violet staining were detected in MMT (1.23) than in PP and PS (0.400 and 0.721) indicating preferential colonization of microbes in clay particles. Microbial colonization further enhanced the sorption ability toward Pb(II), but inhibited the desorption and bioaccessibility of enriched Pb(II) in zebrafish and decreased the toxicity to gastric epithelial cells in an order of MMT > PS ≈ PP. The crucial effects were mainly because microbe-colonized substrates possessed higher oxygen functional groups and specific surface area and exhibited stronger interactions with Pb(II) and digestive component (i.e., pepsin) than pure substrates. This decreased the available soluble pepsin for complexing with sorbed Pb(II). The findings highlight the role of microbial colonization in modulating the exposure risks of artificial and natural substrate-associated pollutants and suggest that the risks of MPs may be overestimated compared to clay particles.


Subject(s)
Bentonite , Environmental Pollutants , Animals , Bentonite/toxicity , Clay , Lead/toxicity , Microplastics/toxicity , Pepsin A , Plastics , Zebrafish , Polypropylenes , Polystyrenes/toxicity
13.
Sci Total Environ ; 902: 166584, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37634718

ABSTRACT

The nonwoven PET fabrics are chemically, mechanically and thermally treated fiber aggregate without weaving, knitting or braiding, which could be used as a base to make polyurethane (PU) synthetic leather through a series of processing. Our research systematically compared the photoaging behaviors of pure non-woven PET base fabric (NPET-P) and PU synthetic leather (nonwoven PET-base fabrics with PU coating, NPET-U), and their possibilities for microplastic fibers (MPFs) generation and chemical transformation in water. NPET-U was photoaged to a higher oxidation degree with higher O/C ratios and more distinct changes in chemical structures. The amount of MPFs released from NPET-U (1.98 × 107 g/fibers) was significantly lower than that from NPET-P (4.76 × 107 g/fibers) after 360 h light irradiation (p value <0.05) with a slower degradation rate and delayed MPFs release. The lengths and diameters of released MPFs from NPET-U varied within a smaller range than that from NPET-P exposed to UV light irradiation. Natural sunlight aging of fabrics for 365 days was found to be equivalent to approximately 85.3-127.2 h UV aging in the laboratory, which indicated the lab accelerated experiments was extraordinarily intense to simulate natural sunlight aging. Furthermore, abundant calcium and sulfur-contained chemicals were detected in original fabrics and the leachate of 360 h light-aged fabrics using the inductively coupled plasma optical emission spectrometer (ICP-OES). The organic components of the leachate were separated according to their molecular weight with the changes of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and the UV response over aging time. UV stimulation aggravated the role of plastic polymers as disinfection by-product (DBP) precursors. Nevertheless, although NPET-U could produce more nitrogen-contained chemicals, it had similar formation potentials of nitrogen-containing DBPs as NPET-P. The discussion lucubrated the potential risks of the production of MPFs and chemical release in the leachate with regard to combined plastic pollution.

14.
J Hazard Mater ; 459: 132154, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37517239

ABSTRACT

Microplastics (MPs) are widely detected in wastewater treatment plants (WWTPs) and natural environment, while the relationship of MPs pollution in both media is not fully understood. In this study, the occurrence of MPs in WWTPs and in surface water and soil was investigated, and their relationship was critically formulated. Results showed although wastewater treatment could effectively remove MPs (58.2%), the effluent was still the important source of MPs in the river, while sludge was not as important as the effluent of MPs in the soil. Specifically, the dominant size ranges of MPs were 0-200 µm, with main type of PE in all wastewater, sludge, river and soil. The dominant shape of MPs in wastewater and river was film. However, the shapes were different between sludge (52.1% of fibers) and soil (40.6% of fragment). Overall, WWTP input and surface runoff were the main source of MPs pollution in surface water, and the abrasion of agricultural films accounted for the MPs pollution in soil. The findings revealed the distribution and interconnection of MPs in WWTPs and environmental media, which could help to trace the sources of MPs pollution and assess the ecological risks in the environment.

15.
Water Res ; 242: 120165, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37320877

ABSTRACT

In this study, we systematically developed the long-term photoaging behavior of different-sized polypropylene (PP) floating plastic wastes in a coastal seawater environment. After 68 d of laboratory accelerated UV irradiation, the PP plastic particle size decreased by 99.3 ± 0.15%, and nanoplastics (average size: 435 ± 250 nm) were produced with a maximum yield of 57.9%, evidencing that natural sunlight irradiation-induced long-term photoaging ultimately converts floating plastic waste in marine environments into micro- and nanoplastics. Subsequently, when comparing the photoaging rate of different sized PP plastics in coastal seawater, we discovered that large sized PP plastics (1000-2000 and 5000-7000 µm) showed a lower photoaging rate than that of small sized PP plastic debris (0-150 and 300-500 µm), with the decrease rate of plastic crystallinity as follow: 0-150 µm (2.01 d-1) > 300-500 µm (1.25 d-1) > 1000-2000 µm (0.780 d-1) and 5000-7000 µm (0.900 d-1). This result can be attributed to the small size PP plastics producing more reactive oxygen species (ROS) species, with the formation capacity of hydroxyl radical •OH as follows: 0-150 µm (6.46 × 10-15 M) > 300-500 µm (4.87 × 10-15 M) > 500-1000 (3.61 × 10-15 M) and 5000-7000 µm (3.73 × 10-15 M). The findings obtained in this study offer a new perspective on the formation and ecological risks of PP nanoplastics in current coastal seawater environments.


Subject(s)
Polypropylenes , Water Pollutants, Chemical , Plastics , Microplastics , Water Pollutants, Chemical/analysis , Seawater
16.
Environ Sci Technol ; 57(5): 1894-1906, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36693029

ABSTRACT

Polyurethane (PU) synthetic leathers possess an intricate plastic composition, including polyester (PET) base fabrics and upper PU resin, but the release of fragments from the complexes is unclear. Therefore, we investigated the photodegradation trends of PET base fabrics with PU coating (PET-U) as a representative of composite plastics. Attention was paid to the comparison of the photoaging process of PET-U with that of pure PET base fabric (PET-P). To reveal the potential for chain scission, physical and chemical changes (e.g., surface morphology, molecular weight, and crystallinity) of the two fabrics were explored. The generation of microplastic fibers (MPFs) and microplastic particles (MPPs) was distinguished. Compared with PET-P, PET-U showed a similar but delayed trend in various characteristics and debris release rate as the photoaging time prolonged. Even so, after 360 h of illumination, the generated number of MPs (including MPFs and MPPs) rose considerably to 9.32 × 107 MPs/g, and the amount of released nanoplastics (NPs) increased to 2.70 × 1011 NPs/g from PET-U. The suppression of MP formation from PET-U was potentially directed by the physical shielding of the upper PU layer and the dropped MPs, which resisted the photochemical radical effect. The components of dissolved organic matter derived from plastics (P-DOM) were separated by molecular weight using a size-exclusion chromatography-diode array detector-organic carbon detector/organic nitrogen detector (SEC-DAD-OCD/OND), and the results showed that a larger amount of carbon- and nitrogen-containing chemical substances were generated in PET-U, accompanied by more aromatic and fluorescent compounds. The results provided theoretical bases and insights for future research on the risks of plastic debris from PU synthetic leathers on aquatic organisms and indicated feasible directions for exploring combined pollution studies of plastics.


Subject(s)
Plastics , Water Pollutants, Chemical , Plastics/chemistry , Microplastics , Polyurethanes , Polyesters , Photolysis , Water Pollutants, Chemical/analysis
17.
Sci Total Environ ; 858(Pt 1): 159845, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36461563

ABSTRACT

Light irradiation is considered as most important process for the aging of microplastics (MPs); however, which factors drive the process is still unknown. This study investigated the role of typical environmental factors including ultraviolet (UV), oxygen, temperature and physical abrasion in the photoaging of polystyrene (PS) in freshwater. Results showed that UV irradiation and abrasion were dominant factors for affecting photoaging of PS based on dynamic analysis in the property of MP itself and leachate. Especially, when both factors worked together on MPs, they caused more destructive effect. Mechanical exploration revealed that photoaging of MPs was mainly controlled by reactive oxygen species (ROS, 1O2) generated from the reaction of dissolved oxygen/water molecules with polymer radicals initiated by UV energy. As an attacker on MPs, ROS formation was significantly linked with UV intensity, highlighting the important role of UV. The fragmentation was correlated to abrasion intensity, where a higher abrasion generated stronger physical force to tear MPs into fragments. The low roles of oxygen and temperature were presumably related to multiple effects of ROS formation and UV absorption. The findings firstly clarify the drivers in the photoaging of MPs, and contribute our effort to assess their fate and pollution risk in the environment.


Subject(s)
Microplastics , Skin Aging , Microplastics/toxicity , Plastics , Reactive Oxygen Species , Fresh Water , Polystyrenes , Oxygen
18.
J Hazard Mater ; 443(Pt A): 130194, 2023 Feb 05.
Article in English | MEDLINE | ID: mdl-36270192

ABSTRACT

The performance of sulfidated zero valent iron (ZVI) for the degradation of chlorinated hydrocarbons under aerobic conditions remains unclear. In this study, sulfidated microscale ZVI (S-mZVI) was prepared for 1,1,2,2-tetrachloroethane (TeCA) degradation under aerobic conditions. Compared with mZVI, S-mZVI showed excellent passivation resistance during the degradation of TeCA and its hydrolysis/reduction products. This was probably because the existence of FeSx shell (FeS/FeS2/FeSn) protected the internal ZVI core from passivation. Though the outer layer of FeSx shell could be oxidized to FeSn and Fe2(SO4)3 as the reaction proceeded, the inner layer remained stable, which maintained the fast electron transfer capability of S-mZVI. The high temperature could enhance the degradation of TeCA, without compromising the anti-passivation and reusability of S-mZVI. Even after the fifth cycle, S-mZVI could still efficiently degrade 90% of TeCA within 24 h. Furthermore, it was found that the degradation of TeCA and its reduction products (e.g., dichloroethylene (DCE)) by S-mZVI relied on direct electron transfer and hydrogen radical (H•), respectively, which might explain the lower levels of toxic DCE in the S-mZVI system. This study provides valuable information for the practical application of S-mZVI in the treatment of wastewater containing halogenated hydrocarbons under ambient conditions.


Subject(s)
Hydrocarbons, Chlorinated , Water Pollutants, Chemical , Iron , Water Pollutants, Chemical/analysis
19.
J Hazard Mater ; 438: 129571, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35999732

ABSTRACT

Alkali activation is the most commonly used activation method for persulfate (PS) in in-situ remediation. However, the role of alkali in pollutant degradation is still elusive, limiting the optimization of relevant remediation strategies. In this study, we found that chlorinated alkanes (e.g., tetrachloroethane (TeCA)) could be efficiently degraded by thermal-alkali activation of PS. The main role of alkali was not activating PS but hydrolyzing the chlorinated alkanes, which was evidenced by the immediate conversion of TeCA into trichloroethylene (TCE) with NaOH and PS or with sole NaOH solution. Electron paramagnetic resonance analysis also showed that with a high NaOH/PS molar ratio (4:1) the intensity of oxidative radicals decreased, implying that high levels of alkali did not favor the formation of free radicals. Interestingly, better degradation of TeCA and its product TCE was observed by the combination of alkaline hydrolysis and thermal activation of PS (where alkali was added 6 h before PS rather than simultaneously) in comparison to thermal-alkali activation of PS. This study provides new insights into the remediation of chlorinated alkane-contaminated soils by in-situ chemical oxidation.


Subject(s)
Trichloroethylene , Water Pollutants, Chemical , Alkalies , Hydrolysis , Oxidation-Reduction , Sodium Hydroxide/analysis , Soil , Sulfates/analysis , Water Pollutants, Chemical/analysis
20.
Water Res ; 221: 118825, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35949074

ABSTRACT

According to extensive in situ investigations, the microplastics (MPs) determined in current wastewater treatment plants (WWTPs) are mostly aged, with roughened surfaces and varied types of oxygen-containing functional groups (i.e., carbonyl and hydroxyl). However, the formation mechanism of aged MPs in WWTPs is still unclear. This paper systematically reviewed MP fragmentation and generation mechanisms in WWTPs at different treatment stages. The results highlight that MPs are prone to undergo physical abrasion, biofouling, and chemical oxidation-associated weathering in WWTPs at different treatment stages and can be further decomposed into smaller secondary MPs, including in nanoplastics (less than 1000 nm or 100 nm in size), suggesting that WWTPs can act as a formation source for MPs in aquatic environments. Sand associated mechanical crashes in the primary stage, microbes in active sewage sludge-related biodegradation in the secondary stage, and oxidant-relevant chemical oxidation processes (light photons, Cl2, and O3) in the tertiary stage are the dominant causes of MP formation in WWTPs. For MP formation mechanisms in WWTPs, external environmental forces (shear and stress forces, UV radiation, and biodegradation) can first induce plastic chain scission, destroy the plastic molecular arrangement, and create abundant pores and cracks on the MP surface. Then, the physicochemical properties (modulus of elasticity, tensile strength and elongation at break) of MPs shift consequently and finally breakdown into smaller secondary MPs or nanoscale plastics. Overall, this review provides new insights to better understand the formation mechanism, occurrence, fate, and adverse effects of aged microplastics/nanoplastics in current WWTPs.


Subject(s)
Water Pollutants, Chemical , Water Purification , Environmental Monitoring , Microplastics , Plastics , Sewage , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...