Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 380
Filter
1.
J Phys Chem Lett ; : 6183-6189, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836642

ABSTRACT

Electrocatalytic oxidation of formaldehyde (FOR) is an effective way to prevent the damage caused by formaldehyde and produce high-value products. A screening strategy of a single-layer MnO2-supported transition metal catalyst for the selective oxidation of formaldehyde to formic acid was designed by high-throughput density functional calculation. N-MnO2@Cu and MnO2@Cu are predicted to be potential FOR electrocatalysts with potential-limiting steps (PDS) of 0.008 and -0.009 eV, respectively. Electronic structure analysis of single-atom catalysts (SACs) shows that single-layer MnO2 can regulate the spin density of loaded transition metal and thus regulate the adsorption of HCHO (Ead), and Ead is volcanically distributed with the magnetic moment descriptor -|mM - mH|. In addition, the formula quantifies Ead and |mM - mH| to construct a volcano-type descriptor α describing the PDS [ΔG(*CHO)]. Other electronic and structural properties of SACs and α are used as input features for the GBR method to construct machine learning models predicting the PDS (R2 = 0.97). This study hopes to provide some insights into FOR electrocatalysts.

2.
Front Med (Lausanne) ; 11: 1390049, 2024.
Article in English | MEDLINE | ID: mdl-38841575

ABSTRACT

Background: Liver fibrosis significantly impacts public health globally. Untreated liver fibrosis eventually results in cirrhosis. Cigarette smoking is the main etiologic factor for various diseases. However, the causal effects of cigarette smoking on liver fibrosis and cirrhosis have yet to be fully elucidated. Methods: In this study, Mendelian randomization (MR) analysis was performed to assess the association between cigarette smoking, liver fibrosis, and cirrhosis. Single-nucleotide polymorphisms (SNPs) were selected as instrumental variables from a genome-wide association study (GWAS) of European ancestry. Patients were divided into six exposure categories as follows: "ever smoked," "pack years of smoking," "age of smoking initiation," "smoking status: never," "smoking status: current," and "smoking status: previous." The outcomes of this study included liver fibrosis and cirrhosis. MR-Egger, weighted median, inverse variance weighted, simple mode, and weighted mode were selected as the analysis methods. Cochran's Q and the MR-PRESSO tests were conducted to measure heterogeneity. The MR-Egger method was performed to evaluate horizontal pleiotropy, while the "leave-one-out" analysis was performed for sensitivity testing. Results: The results of this study showed that having a smoking history increases the risk of liver fibrosis and cirrhosis ["ever smoked": odds ratio (OR) = 5.704, 95% CI: 1.166-27.910, p = 0.032; "smoking status: previous": OR = 99.783, 95% CI: 2.969-3.353e+03, p = 0.010]. A negative correlation was observed between patients who never smoked and liver fibrosis and cirrhosis ("smoking status: never": OR = 0.171, 95% CI: 0.041-0.719, p = 0.016). However, there were no significant associations between "smoking status: current," "pack years of smoking," and "age of smoking initiation" and liver fibrosis and cirrhosis. Cigarette smoking did not have a significant horizontal pleiotropic effect on liver fibrosis and cirrhosis. The "Leave-one-out" sensitivity analysis indicated that the results were stable. Conclusion: The study confirmed the causal effects of cigarette smoking on liver fibrosis and cirrhosis.

3.
Small ; : e2310360, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698606

ABSTRACT

Circulating tumor cells (CTCs) are widely considered as a reliable and promising class of markers in the field of liquid biopsy. As CTCs undergo epithelial-mesenchymal transition (EMT), phenotype detection of heterogeneous CTCs based on EMT markers is of great significance. In this report, an integrated analytical strategy that can simultaneously capture and differentially detect epithelial- and mesenchymal-expressed CTCs in bloods of non-small cell lung cancer (NSCLS) patients is proposed. First, a commercial biomimetic polycarbonate (PCTE) microfiltration membrane is employed as the capture interface for heterogenous CTCs. Meanwhile, differential detection of the captured CTCs is realized by preparing two distinct CdTe quantum dots (QDs) with red and green emissions, attached with EpCAM and Vimentin aptamers, respectively. For combined analysis, a polydimethylsiloxane (PDMS) chip with simple structure is designed, which integrates the membrane capture and QDs-based phenotype detection of CTCs. This chip not only implements the analysis of the number of CTCs down to 2 cells mL-1, but enables EMT process tracking according to the specific signals of the two QDs. Finally, this method is successfully applied to inspect the correlations of numbers or proportions of heterogenous CTCs in 94 NSCLS patients with disease stage and whether there is distant metastasis.

4.
Gene ; 923: 148577, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762016

ABSTRACT

Agrobacteria-mediated transformation is widely used in plant genetic engineering to introduce exogenous genes and create mutant lines through random T-DNA insertion and gene disruption. When T-DNA fragments are inserted into the plant genome, it could cause chromosomal abnormalities. In this study, we investigated the genetic basis of pleiotropic phenotypes observed in the T-DNA insertion mutant lnc161. We discovered that there are four T-DNA insertions present in the lnc161 genome, which disrupted the genes LNC161 (AT3G05035), AT3G57400, AT5G05630, and AT5G16450, respectively. However, none of these insertions were the causative mutation that leads to the lnc161 phenotypes. Strikingly, through genetic analyses and high throughput sequencing, we found an inversion of about 19.8 Mb sequences between LNC161 and AT3G57400. Moreover, the sequences between AT5G05630 and AT5G16450 (about 3.7 Mb) were translocated from chromosome 5 to chromosome 3, adjacent to the inversion sequences, and were duplicated. This duplication led to an up-regulation of genes expression in this region, potentially resulting in pleiotropic morphological traits in lnc161. Overall, this study provides a case showing complex chromosomal re-arrangement induced by T-DNA insertion.

5.
Autophagy ; : 1-3, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762749

ABSTRACT

Outer membrane vesicles (OMVs) are nanometer-sized membrane blebs secreted by all Gram-negative bacteria to facilitate bacterial communication and modulate the external environment, including in the context of host-microbe interactions. Neisseria gonorrhoeae releases OMVs during interactions with epithelial cells; however, beneficial functional activities for these OMVs have not yet been demonstrated. Our recent study shows that gonococcal OMVs are endocytosed by epithelial cells and subsequently induce mitophagy through a dual PorB-dependent mechanism. PorB is the major gonococcal outer membrane porin protein, which is able to translocate to mitochondria and dissipate the mitochondrial membrane potential, leading to the initiation of a conventional mitophagy mechanism that is dependent on PINK1 and the receptor proteins OPTN or CALCOCO2/NDP52. A second SQSTM1/p62-dependent mitophagy pathway results from direct K63-linked polyubiquitination of PorB lysine residue 171 by the E3 ubiquitin ligase RNF213. Induction of mitophagy favors intracellular gonococcal survival, because it reduces the release of bactericidal mitochondrial reactive oxygen species. These findings highlight a sophisticated bimodal PorB-dependent mechanism by which gonococcal OMVs modulate the intracellular environment to enhance survival in this hostile niche.

6.
J Neuroimmune Pharmacol ; 19(1): 17, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717643

ABSTRACT

In our previous study, we concluded that sirtuin 5 (SIRT5) was highly expressed in microglia following ischaemic stroke, which induced excessive neuroinflammation and neuronal injury. Therefore, SIRT5-targeting interventions should reduce neuroinflammation and protect against ischaemic brain injury. Here, we showed that treatment with a specific SIRT5 inhibitor, MC3482, alleviated microglia-induced neuroinflammation and improved long-term neurological function in a mouse model of stroke. The mice were administrated with either vehicle or 2 mg/kg MC3482 daily for 7 days via lateral ventricular injection following the onset of middle cerebral artery occlusion. The outcome was assessed by a panel of tests, including a neurological outcome score, declarative memory, sensorimotor tests, anxiety-like behavior and a series of inflammatory factors. We observed a significant reduction of infarct size and inflammatory factors, and the improvement of long-term neurological function in the early stages during ischaemic stroke when the mice were treated with MC3482. Mechanistically, the administration of MC3482 suppressed the desuccinylation of annexin-A1, thereby promoting its membrane recruitment and extracellular secretion, which in turn alleviated neuroinflammation during ischaemic stroke. Based on our findings, MC3482 offers promise as an anti-ischaemic stroke treatment that targets directly the disease's underlying factors.


Subject(s)
Annexin A1 , Ischemic Stroke , Microglia , Neuroinflammatory Diseases , Sirtuins , Animals , Male , Mice , Annexin A1/drug effects , Annexin A1/metabolism , Infarction, Middle Cerebral Artery/drug therapy , Infarction, Middle Cerebral Artery/metabolism , Ischemic Stroke/drug therapy , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuroinflammatory Diseases/drug therapy , Neuroinflammatory Diseases/metabolism , Sirtuins/antagonists & inhibitors , Sirtuins/metabolism , Up-Regulation/drug effects
7.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598840

ABSTRACT

Sarcoplasmic calcium-binding protein (Cra a 4) from Crassostrea angulata belongs to the EF-hand superfamily, and understanding of its structure-allergenicity relationship is still insufficient. In this study, chemical denaturants were used to destroy the structure of Cra a 4, showing that disruption of the structure reduced its IgG-/IgE-binding activity. To explore which critical amino acid site affects the allergenicity of Cra a 4, the mutants were obtained by site-directed mutations in the disulfide bonds site (C97), conformational epitopes (I105, D114), or Ca2+-binding region (D106, D110) and their IgG-/IgE-binding activity was reduced significantly using serological tests. Notably, C97A had the lowest immunoreactivity. In addition, two conformational epitopes of Cra 4 were verified. Meanwhile, the increase of the α-helical content, surface hydrophobicity, and surface electrostatic potential of C97A affected its allergenicity. Overall, the understanding of the structure-allergenicity relationship of Cra a 4 allowed the development of a hypoallergenic mutant.

8.
Plant Biotechnol J ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600705

ABSTRACT

The nuclear factor Y (NF-Y) transcription factors play important roles in plant development and physiological responses. However, the relationship between NF-Y, plant hormone and plant stress resistance in tropical crops remains unclear. In this study, we identified MeNF-YC15 gene in the NF-Y family that significantly responded to Xanthomonas axonopodis pv. manihotis (Xam) treatment. Using MeNF-YC15-silenced and -overexpressed cassava plants, we elucidated that MeNF-YC15 positively regulated disease resistance to cassava bacterial blight (CBB). Notably, we illustrated MeNF-YC15 downstream genes and revealed the direct genetic relationship between MeNF-YC15 and 1-aminocyclopropane-1-carboxylic acid (ACC) oxidase (MeACO1)-ethylene module in disease resistance, as evidenced by the rescued disease susceptibility of MeNF-YC15 silenced cassava plants with ethylene treatment or overexpressing MeACO1. In addition, the physical interaction between 2C-type protein phosphatase 1 (MePP2C1) and MeNF-YC15 inhibited the transcriptional activation of MeACO1 by MeNF-YC15. In summary, MePP2C1-MeNF-YC15 interaction modulates ethylene biosynthesis and cassava disease resistance, providing gene network for cassava genetic improvement.

9.
Article in English | MEDLINE | ID: mdl-38635021

ABSTRACT

PURPOSE OF REVIEW: Knee osteoarthritis (KOA) is a degenerative joint disease which can result in chronic pain and disability. The current interventions available for KOA often fail to provide long-lasting effects, highlighting the need for new treatment options that can offer durable benefits. Previous studies have suggested the efficacy of acupuncture for knee osteoarthritis (KOA) with its durability remaining uncertain. In this review, we aimed to investigate the durability of the efficacy after completion of treatment. RECENT FINDINGS: We performed thorough searches of PubMed, EMBASE, Web of Science, and Cochrane Central Register of Controlled Trials from inception to November 4, 2023. The outcomes were assessed at all available time points after completion of treatment. Primary outcomes were changes from baseline in pain and function measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) pain and function subscales. Secondary outcomes included response rate, overall pain, the WOMAC stiffness subscale, total WOMAC index, and physical and mental health components of 12/36-item Short-Form Health Survey. A total of 10 randomized controlled trials (RCTs) involving 3221 participants were included. Pooled estimates suggested that acupuncture may offer potential improvements in function and overall pain for 4.5 months post-treatment versus sham acupuncture (SA). Acupuncture may provide durable clinically important pain relief and functional improvement up to 5 months post-treatment versus usual care, and up to 6 months post-treatment versus diclofenac. For acupuncture versus no treatment, one trial with large sample size indicated that improvements in pain and function persisted for 3 months post-treatment, while the other trial reported that significant pain reduction and functional improvement were only observed at the end of the treatment, not at 9 months post-treatment. However, acupuncture as adjunct to exercise-based physical therapy (EPT) showed no superiority to SA as an adjunct to EPT or EPT alone up to 11.25 months after completion of treatment. Acupuncture may provide pain alleviation and functional improvements in KOA patients for 3 to 6 months after completion of treatment with a good safety profile.

10.
Respir Res ; 25(1): 183, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664728

ABSTRACT

BACKGROUND: Previous studies have indicated that neutrophil extracellular traps (NETs) play a pivotal role in pathogenesis of pulmonary arterial hypertension (PAH). However, the specific mechanism underlying the impact of NETs on pulmonary artery smooth muscle cells (PASMCs) has not been determined. The objective of this study was to elucidate underlying mechanisms through which NETs contribute to progression of PAH. METHODS: Bioinformatics analysis was employed in this study to screen for potential molecules and mechanisms associated with occurrence and development of PAH. These findings were subsequently validated in human samples, coiled-coil domain containing 25 (CCDC25) knockdown PASMCs, as well as monocrotaline-induced PAH rat model. RESULTS: NETs promoted proliferation of PASMCs, thereby facilitating pathogenesis of PAH. This phenomenon was mediated by the activation of transmembrane receptor CCDC25 on PASMCs, which subsequently activated ILK/ß-parvin/RAC1 pathway. Consequently, cytoskeletal remodeling and phenotypic transformation occur in PASMCs. Furthermore, the level of NETs could serve as an indicator of PAH severity and as potential therapeutic target for alleviating PAH. CONCLUSION: This study elucidated the involvement of NETs in pathogenesis of PAH through their influence on the function of PASMCs, thereby highlighting their potential as promising targets for the evaluation and treatment of PAH.


Subject(s)
Cell Proliferation , Extracellular Traps , Myocytes, Smooth Muscle , Rats, Sprague-Dawley , Animals , Rats , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/pathology , Cell Proliferation/physiology , Humans , Male , Extracellular Traps/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/metabolism , Pulmonary Arterial Hypertension/metabolism , Pulmonary Arterial Hypertension/pathology , Cells, Cultured , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology
11.
J Clin Invest ; 134(11)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687617

ABSTRACT

One critical mechanism through which prostate cancer (PCa) adapts to treatments targeting androgen receptor (AR) signaling is the emergence of ligand-binding domain-truncated and constitutively active AR splice variants, particularly AR-V7. While AR-V7 has been intensively studied, its ability to activate distinct biological functions compared with the full-length AR (AR-FL), and its role in regulating the metastatic progression of castration-resistant PCa (CRPC), remain unclear. Our study found that, under castrated conditions, AR-V7 strongly induced osteoblastic bone lesions, a response not observed with AR-FL overexpression. Through combined ChIP-seq, ATAC-seq, and RNA-seq analyses, we demonstrated that AR-V7 uniquely accesses the androgen-responsive elements in compact chromatin regions, activating a distinct transcription program. This program was highly enriched for genes involved in epithelial-mesenchymal transition and metastasis. Notably, we discovered that SOX9, a critical metastasis driver gene, was a direct target and downstream effector of AR-V7. Its protein expression was dramatically upregulated in AR-V7-induced bone lesions. Moreover, we found that Ser81 phosphorylation enhanced AR-V7's pro-metastasis function by selectively altering its specific transcription program. Blocking this phosphorylation with CDK9 inhibitors impaired the AR-V7-mediated metastasis program. Overall, our study has provided molecular insights into the role of AR splice variants in driving the metastatic progression of CRPC.


Subject(s)
Gene Expression Regulation, Neoplastic , Prostatic Neoplasms, Castration-Resistant , Protein Isoforms , Receptors, Androgen , Male , Receptors, Androgen/genetics , Receptors, Androgen/metabolism , Humans , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/metabolism , Animals , Mice , Protein Isoforms/genetics , Protein Isoforms/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Cell Line, Tumor , Neoplasm Metastasis , Bone Neoplasms/secondary , Bone Neoplasms/genetics , Bone Neoplasms/metabolism , Bone Neoplasms/pathology , Alternative Splicing , Epithelial-Mesenchymal Transition/genetics , Transcription, Genetic
12.
Pathol Res Pract ; 256: 155232, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452586

ABSTRACT

AIM: Methylation status of genome varies between pre-acute-on-chronic hepatitis B liver failure (pre-ACHBLF), acute-on-chronic hepatitis B liver failure (ACHBLF), and chronic hepatitis B patients. This study aimed to find better prognostic indicators for acute-on-chronic liver failure. METHODS: The level of global genome methylation in peripheral blood mononuclear cells (PBMCs) was detected. The overall genome methylation rate was determined using MethylFlash™ Methylated DNA Quantification Kit(Colorimetric). DNMT activity were measured using DNA Methyltransferase Activity/Inhibition Assay Kit. Gene expression of DNA methyltransferases (DNMT),methyl-CpG-binding domain (MBD) were detected by qRT-PCR. RESULTS: The global genome methylation level in ACHBLF group was significantly higher than that in chronic hepatitis B group (P<0.001). There was also obvious difference of the global genome methylation level between pre-ACHBLF group and CHB group (P<0.001). Meanwhile, the activity of DNMT in ACHBLF group was significantly higher than that in chronic hepatitis B group (P<0.001). The mRNA expression level of DNMT1 was higher than that in pre-ACHBLF group (P<0.01) and CHB group (PP<0.001). The mRNA expression level of MBD1 in ACHBLF group was also higher than that in CHB group (P<0.001) and healthy controls (HCs) (P<0.01). And the mRNA expression level of MBD3 and MBD4 in ACHBLF, pre-ACHBLF and CHB group were lower than that in HCs (P<0.001). Meanwhile we observed an opposite change in the mRNA expression level of MECP2. The ROC curve suggested that global genome methylation level was a better prognostic predictor than MELD score in ACHBLF (AUC 0.950, SE 0.0237, 95%CI 0.874-0.986 VS AUC 0.863, SE 0.0439, 95%CI 0.765-0.931, P=0.0429). CONCLUSIONS: Genome methylation level can be a good biomarker in predicting the severity and prognosis of ACHBLF.


Subject(s)
Acute-On-Chronic Liver Failure , Hepatitis B, Chronic , Humans , Prognosis , Acute-On-Chronic Liver Failure/genetics , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/genetics , Leukocytes, Mononuclear , DNA Methylation/genetics , RNA, Messenger/analysis , DNA
13.
J Environ Manage ; 356: 120751, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38531131

ABSTRACT

Cost-effective treatment or even valorization of the bauxite residue (red mud) from the alumina industry is in demand to improve their environmental and economic liabilities. This study proposes a strategy that provides a near-complete conversion of bauxite residue to valuable products. The first step involves dilute acid leaching, which allowed the fractionation of raw residues into (1) an aqueous fraction rich in silica and aluminium and (2) a solid residue rich in iron, titanium and rare earth elements. For the proposed process, 91% of the original silicon, 67% of the aluminium, 78% of the scandium and 69% of the cerium were recovered. The initial cost evaluation suggested that this approach is profitable with a gross margin of 167 $US per tonne. This "Residue2Product" approach should be considered for large-scale practices as one of the most economical and sustainable solutions to this environmental and economic liability for the alumina industry.


Subject(s)
Aluminum Oxide , Aluminum , Aluminum Oxide/chemistry , Iron , Titanium , Water
14.
Biosens Bioelectron ; 253: 116191, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38460209

ABSTRACT

To alleviate the discomfort associated with frequent blood glucose detection in diabetic patients, a novel non-invasive tear glucose biosensor has been developed. This involved the design and preparation of a photoelectrochemical probe based on an optical fiber and biological enzymes. One end of the optical fiber connects to a light source, acting as an energy source and imparting, self-powered capability to the biosensor. The opposite end is loaded with nanomaterials and glucose oxidase, designed for insertion into the sample to realize photoelectrochemical sensing. This innovative configuration not only improves the integration of the biosensor but is also suitable for analyzing minuscule voluminal samples. The results show that the proposed biosensor exhibits a linear range from 10 nM to 100 µM, possesses a low detection limit of 4.1 nM and a short response time of 0.7 s. Benefiting from the high selectivity of the enzyme, the proposed biosensor demonstrates excellent resistance to the interference of common tear components. In summary, this work provides a more effective method for non-invasive glucose detection and affords valuable ideas for the design and fabrication of non-invasive and self-powered biosensors.


Subject(s)
Biosensing Techniques , Optical Fibers , Humans , Biosensing Techniques/methods , Glucose , Blood Glucose , Glucose Oxidase
15.
Heliyon ; 10(6): e26911, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38496847

ABSTRACT

N6-methyladenosine (m6A) modification is a common RNA modification in the central nervous system and has been linked to various neurological disorders, including Alzheimer's disease (AD). However, the dynamic of mRNA m6A modification and m6A enzymes during the development of AD are not well understood. Therefore, this study examined the expression profiles of m6A and its enzymes in the development of AD. The results showed that changes in the expression levels of m6A regulatory factors occur in the early stages of AD, indicating a potential role for m6A modification in the onset of the disease. Additionally, the analysis of mRNA m6A expression profiles using m6A-seq revealed significant differences in m6A modification between AD and control brains. The genes with differential methylation were found to be enriched in GO and KEGG terms related to processes such as inflammation response, immune system processes. And the differently expressed genes (DEGs) are negatively lryassociated with genes involved in microglia hemostasis, but positively associated with genes related to "disease-associated microglia" (DAM) associated genes. These findings suggest that dysregulation of mRNA m6A modification may contribute to the development of AD by affecting the function and gene expression of microglia.

16.
Virol J ; 21(1): 72, 2024 03 21.
Article in English | MEDLINE | ID: mdl-38515187

ABSTRACT

BACKGROUND: Hepatitis B virus (HBV) infection is a public health problem that seriously threatens human health. This study aimed to investigate the clinical significance of glutathione peroxidase 4(GPX4) in the occurrence and development of chronic hepatitis B (CHB). METHODS: A total of 169 participants including 137 patients with CHB and 32 healthy controls (HCs) were recruited. We detected the expression of GPX4 and stimulator of interferon genes (STING) in peripheral blood mononuclear cells (PBMCs) by real-time quantitative polymerase chain reaction (RT-qPCR). The methylation level of GPX4 gene promoter in PBMCs was detected by TaqMan probe-based quantitative methylation-specific PCR (MethyLight). Enzyme-linked immunosorbent assay (ELISA) was performed to detect the serum levels of GPX4, IFN-ß, oxidative stress (OS) related molecules, and pro-inflammatory cytokines. RESULTS: The expression levels of GPX4 in PBMCs and serum of CHB patients were lower than those of HCs, but the methylation levels of GPX4 promoter were higher than those of HCs, especially in patients at the immune tolerance phase. STING mRNA expression levels in PBMCs and serum IFN-ß levels of patients at the immune activation phase and reactivation phase of CHB were higher than those at other clinical phases of CHB and HCs. GPX4 mRNA expression level and methylation level in PBMCs from patients with CHB had a certain correlation with STING and IFN-ß expression levels. In addition, the methylation level of the GPX4 promoter in PBMCs from patients with CHB was correlated with molecules associated with OS and inflammation. CONCLUSIONS: GPX4 may play an important role in the pathogenesis and immune tolerance of CHB, which may provide new ideas for the functional cure of CHB.


Subject(s)
Hepatitis B, Chronic , Humans , DNA Methylation , Hepatitis B virus/genetics , Hepatitis B virus/metabolism , Leukocytes, Mononuclear/metabolism , Phospholipid Hydroperoxide Glutathione Peroxidase/genetics , Phospholipid Hydroperoxide Glutathione Peroxidase/metabolism , RNA, Messenger/genetics
17.
Langmuir ; 40(12): 6515-6523, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38466089

ABSTRACT

Photocatalysis represents an effective technology for environmental remediation. Herein, a series of Zn-doped BiOBr hollow microspheres are synthesized via one-pot solvothermal treatment of bismuth nitrate and dodecyl ammonium bromide in ethylene glycol along with a calculated amount of zinc acetate. Whereas the materials morphology and crystal structure remain virtually unchanged upon Zn-doping, the photocatalytic performance toward the degradation of ciprofloxacin is significantly improved under visible light irradiation. This is due to the formation of a unique band structure that facilitates the separation of photogenerated electron-hole pairs, reduced electron-transfer resistance, and enhanced electron mobility and carrier concentration. The best sample consists of a Zn doping amount of 1%, which leads to a 99.2% degradation rate of ciprofloxacin under visible photoirradiation for 30 min. The resulting photocatalysts also exhibit good stability and reusability, and the degradation intermediates exhibit reduced cytotoxicity compared to ciprofloxacin. These results highlight the unique potential of BiOBr-based photocatalysts for environmental remediation.


Subject(s)
Anti-Bacterial Agents , Zinc , Anti-Bacterial Agents/pharmacology , Microspheres , Light , Bismuth/chemistry , Ciprofloxacin , Catalysis
18.
Arch Gerontol Geriatr ; 122: 105406, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38507855

ABSTRACT

BACKGROUND: We examined joint trajectories of physical frailty and social frailty as well as their associations with adverse outcomes. METHODS: We conducted a prospective cohort study by using five waves of national data from China Health and Retirement Longitudinal Study (CHARLS 2011-2020), involving 4531 participants aged ≥60 years. We identified 4-year trajectories at three examinations from 2011 to 2015 using parallel process latent class growth analysis. Adverse outcomes were obtained from 2015 to 2020 across two subsequent waves. We calculated hazard ratios (HR) using Cox proportional hazard models. We also conducted analyses by gender. RESULTS: Three joint trajectories were identified, including persistent absence of physical and social frailty (58.5 %), no physical frailty but social frailty (28.1 %), and persistent combination of physical and social frailty (13.4 %). Compared with persistent absence of physical and social frailty, no physical frailty but social frailty and persistent combination of physical and social frailty were associated with higher risk of instrumental activities of daily living (IADL) disability (HR = 1.182-2.020, 95 % CI: 1.014-2.416) and all-cause mortality (HR = 1.440-2.486, 95 % CI: 1.211-3.009). The persistent combination of physical and social frailty was also associated with ADL disability (HR = 2.412, 95 % CI: 1.999-2.911) and falls (HR = 1.410, 95 % CI: 1.196-1.662). Gender differences were observed in relationships between joint trajectories and adverse outcomes. CONCLUSION: Community-dwelling older adults exhibit distinct joint trajectories and those with persistent combination of physical and social frailty experience greatest risk of incident adverse outcomes. Clinical and public health measures targeting physical or social frailty should account for both and be gender-specific.


Subject(s)
Activities of Daily Living , Frail Elderly , Frailty , Humans , Male , Female , Aged , Prospective Studies , Frailty/epidemiology , Frail Elderly/statistics & numerical data , Middle Aged , Longitudinal Studies , China/epidemiology , Geriatric Assessment/methods , Geriatric Assessment/statistics & numerical data , Proportional Hazards Models , Aged, 80 and over , Risk Factors
19.
Nat Commun ; 15(1): 1669, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38396029

ABSTRACT

The bacterial pathogen Neisseria gonorrhoeae is able to invade epithelial cells and survive intracellularly. During this process, it secretes outer membrane vesicles (OMVs), however, the mechanistic details for interactions between gonococcal OMVs and epithelial cells and their impact on intracellular survival are currently not established. Here, we show that gonococcal OMVs induce epithelial cell mitophagy to reduce mitochondrial secretion of reactive oxygen species (ROS) and enhance intracellular survival. We demonstrate that OMVs deliver PorB to mitochondria to dissipate the mitochondrial membrane potential, resulting in mitophagy induction through a conventional PINK1 and OPTN/NDP52 mechanism. Furthermore, PorB directly recruits the E3 ubiquitin ligase RNF213, which decorates PorB lysine residue 171 with K63-linked polyubiquitin to induce mitophagy in a p62-dependent manner. These results demonstrate a mechanism in which polyubiquitination of a bacterial virulence factor that targets mitochondria directs mitophagy processes to this organelle to prevent its secretion of deleterious ROS.


Subject(s)
Gonorrhea , Mitophagy , Humans , Reactive Oxygen Species/metabolism , Mitochondria/metabolism , Gonorrhea/microbiology , Epithelial Cells/metabolism , Ubiquitin-Protein Ligases/metabolism , Adenosine Triphosphatases/metabolism
20.
Environ Sci Pollut Res Int ; 31(10): 15597-15610, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38300497

ABSTRACT

Low-molecular-weight aromatic acids (LWMAAs), a ubiquitous organic substance in natural systems, are important in controlling the environmental fate of potentially toxic metals. However, little is known about the effects of LWMAAs on the interactions between biochars and potentially toxic metals. Herein, the influences of three aromatic acids, including benzoic acid (BA), p-hydroxy benzoic acid (PHBA), and syringic acid (SA), on the adsorption of Cd2+ onto biochars generated at three different pyrolysis temperatures under acidic and neutral conditions were examined. Generally, the adsorption ability of biochars for Cd2+ improved with the increase of pyrolysis temperature, which was ascribed to the increased inorganic element contents (e.g., P, S, and Si) and aromaticity, increasing the complexation between mineral anions and metal ions, and the enhanced cation-π interaction. Interestingly, aromatic acids considerably inhibited the adsorption of Cd2+ onto biochars, which was mainly ascribed to multi-mechanisms, including competition of LWMAA molecules and metal ions for adsorption sites, the pore blocking effect, the weakened interaction between mineral anions and Cd2+ induced by the adsorbed aromatic acids, and the formation of water-soluble metal-aromatic acid complexes. Furthermore, the inhibitory effects of LWMAAs on Cd2+ adsorption intensively depended on the aromatic acid type and followed the order of SA > PHBA > BA. This trend was related to the differences in the physicochemical features (e.g., the octanol/water partition coefficient (log Kow) and molecular size) of diverse LMWAAs. The results of this study demonstrate that the effects of coexisting LMWAAs should not be ignored when biochars are applied in soil remediation and wastewater treatment.


Subject(s)
Cadmium , Charcoal , Minerals , Cadmium/chemistry , Adsorption , Benzoic Acid , Water , Anions , Ions
SELECTION OF CITATIONS
SEARCH DETAIL
...