Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 456
Filter
1.
Sci Rep ; 14(1): 12827, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834834

ABSTRACT

Gut microbiota plays a crucial role in gastrointestinal tumors. Additionally, gut microbes influence the progression of esophageal cancer. However, the major bacterial genera that affect the invasion and metastasis of esophageal cancer remain unknown, and the underlying mechanisms remain unclear. Here, we investigated the gut flora and metabolites of patients with esophageal squamous cell carcinoma and found abundant Bacteroides and increased secretion and entry of the surface antigen lipopolysaccharide (LPS) into the blood, causing inflammatory changes in the body. We confirmed these results in a mouse model of 4NQO-induced esophageal carcinoma in situ and further identified epithelial-mesenchymal transition (EMT) occurrence and TLR4/Myd88/NF-κB pathway activation in mouse esophageal tumors. Additionally, in vitro experiments revealed that LPS from Bacteroides fragile promoted esophageal cancer cell proliferation, migration, and invasion, and induced EMT by activating the TLR4/Myd88/NF-κB pathway. These results reveal that Bacteroides are closely associated with esophageal cancer progression through a higher inflammatory response level and signaling pathway activation that are both common to inflammation and tumors induced by LPS, providing a new biological target for esophageal cancer prevention or treatment.


Subject(s)
Epithelial-Mesenchymal Transition , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Lipopolysaccharides , Myeloid Differentiation Factor 88 , NF-kappa B , Signal Transduction , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Myeloid Differentiation Factor 88/metabolism , Animals , NF-kappa B/metabolism , Humans , Esophageal Neoplasms/pathology , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/microbiology , Mice , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/microbiology , Epithelial-Mesenchymal Transition/drug effects , Cell Line, Tumor , Neoplasm Invasiveness , Inflammation/metabolism , Inflammation/pathology , Bacteroidetes , Gastrointestinal Microbiome , Cell Movement/drug effects , Male , Neoplasm Metastasis , Cell Proliferation , Female
2.
J Dairy Sci ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38754818

ABSTRACT

Excessive concentrations of free fatty acids (FFA) are the main factors causing immune dysfunction and inflammation in dairy cows with ketosis. Polarization of macrophages (the process of macrophages freely switching from one phenotype to another) into M1 or M2 phenotypes is an important event during inflammation induced by environmental stimuli. In non-ruminants, mammalian target of rapamycin (mTOR)-mediated autophagy (a major waste degradation process) regulates macrophage polarization. Thus, the objective was to unravel the role of mTOR-mediated autophagy on macrophage polarization in ketotic dairy cows. Four experiments were performed as follows: (1) In vitro differentiated monocyte-derived macrophages from healthy dairy cows or dairy cows with clinical ketosis (CK) were treated with 100 ng/mL lipopolysaccharide (LPS) and 100 ng/mL interferon-γ (IFN-γ) or 10 ng/mL interleukin-4 (IL4) and 10 ng/mL interleukin-10 (IL10) for 24 h; (2) Immortalized bovine macrophages were treated with 0, 0.3, 0.6, 1.2 mM FFA and LPS and IFN-γ or IL4 and IL10 for 24 h; (3) Macrophages were pretreated with 2 µM 4,6-dimorpholino-N-(4-nitrophenyl)-1,3,5-triazin-2-amine (MHY1485) for 30 min before treatment with LPS and IFN-γ or IL4 and IL10; (4) Macrophages were pretreated with 100 nM rapamycin (RAPA) for 2 h before treatment with LPS and IFN-γ or IL4 and IL10. Compared with healthy cows, cows with CK had a greater mean fluorescence intensity (MFI) of CD86+, but lower MFI of CD206+ and lower number of autophagosomes and autolysosomes in macrophages. Exogenous FFA treatment upregulated protein abundance of inducible nitric oxide synthase (iNOS) and mean fluorescence intensity of CD86, whereas it downregulated the protein abundance of arginase 1 (ARG1) and mean fluorescence intensity of CD206. In addition, FFA increased the p-p65/p65 protein abundance and tumor necrosis factor α (TNFA), interleukin-1B (IL1B), and interleukin-6 (IL6) mRNA abundance, but decreased LC3-phosphatidylethanolamine conjugate (LC3-II) protein abundance and autophagosomes and autolysosomes number. Pretreatment with MHY1485 promoted macrophage M1 polarization and inhibited macrophage M2 polarization via decreased mTOR-mediated autophagy. Activation of mTOR-mediated autophagy by pretreatment with RAPA attenuated the upregulation of inflammation in M1 macrophages that was induced by FFA. These data revealed that high concentrations of FFA promote macrophage M1 polarization in ketotic dairy cows via impairing mTOR-mediated autophagy.

3.
FASEB J ; 38(10): e23671, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38752538

ABSTRACT

NLRP3 inflammasome activation has emerged as a critical initiator of inflammatory response in ischemic retinopathy. Here, we identified the effect of a potent, selective NLRP3 inhibitor, MCC950, on autophagy and apoptosis under hypoxia. Neonatal mice were exposed to hyperoxia for 5 days to establish oxygen-induced retinopathy (OIR) model. Intravitreal injection of MCC950 was given, and then autophagy and apoptosis markers were assessed. Retinal autophagy, apoptosis, and related pathways were evaluated by western blot, immunofluorescent labeling, transmission electron microscopy, and TUNEL assay. Autophagic activity in Müller glia after NLRP3 inflammasome inhibition, together with its influence on photoreceptor death, was studied using western blot, immunofluorescence staining, mRFP-GFP-LC3 adenovirus transfection, cell viability, proliferation, and apoptosis assays. Results showed that activation of NLRP3 inflammasome in Müller glia was detected in OIR model. MCC950 could improve impaired retinal autophagic flux and attenuate retinal apoptosis while it regulated the retinal AMPK/mTOR/ULK-1 pathway. Suppressed autophagy and depressed proliferation capacity resulting from hypoxia was promoted after MCC950 treatment in Müller glia. Inhibition of AMPK and ULK-1 pathway significantly interfered with the MCC950-induced autophagy activity, indicating MCC950 positively modulated autophagy through AMPK/mTOR/ULK-1 pathway in Müller cells. Furthermore, blockage of autophagy in Müller glia significantly induced apoptosis in the cocultured 661W photoreceptor cells, whereas MCC950 markedly preserved the density of photoreceptor cells. These findings substantiated the therapeutic potential of MCC950 against impaired autophagy and subsequent apoptosis under hypoxia. Such protective effect might involve the modulation of AMPK/mTOR/ULK-1 pathway. Targeting NLRP3 inflammasome in Müller glia could be beneficial for photoreceptor survival under hypoxic conditions.


Subject(s)
Apoptosis , Autophagy , Ependymoglial Cells , Furans , Indenes , Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Sulfonamides , Animals , Autophagy/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Mice , Apoptosis/drug effects , Sulfonamides/pharmacology , Inflammasomes/metabolism , Furans/pharmacology , Ependymoglial Cells/metabolism , Ependymoglial Cells/drug effects , Indenes/pharmacology , Mice, Inbred C57BL , Hypoxia/metabolism , Cyclic S-Oxides/pharmacology , Sulfones/pharmacology , Photoreceptor Cells, Vertebrate/metabolism , Photoreceptor Cells, Vertebrate/drug effects , Photoreceptor Cells, Vertebrate/pathology , Heterocyclic Compounds, 4 or More Rings/pharmacology , Photoreceptor Cells/metabolism , Photoreceptor Cells/drug effects , Signal Transduction/drug effects
4.
J Agric Food Chem ; 72(20): 11321-11330, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38714361

ABSTRACT

4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial target enzyme in albino herbicides. The inhibition of HPPD activity interferes with the synthesis of carotenoids, blocking photosynthesis and resulting in bleaching and necrosis. To develop herbicides with excellent activity, a series of 3-hydroxy-2-(6-substituted phenoxynicotinoyl)-2-cyclohexen-1-one derivatives were designed via active substructure combination. The title compounds were characterized via infrared spectroscopy, 1H and 13C nuclear magnetic resonance spectroscopies, and high-resolution mass spectrometry. The structure of compound III-17 was confirmed via single-crystal X-ray diffraction. Preliminary tests demonstrated that some compounds had good herbicidal activity. Crop safety tests revealed that compound III-29 was safer than the commercial herbicide mesotrione in wheat and peanuts. Moreover, the compound exhibited the highest inhibitory activity against Arabidopsis thaliana HPPD (AtHPPD), with a half-maximal inhibitory concentration of 0.19 µM, demonstrating superior activity compared with mesotrione (0.28 µM) in vitro. A three-dimensional quantitative structure-activity relationship study revealed that the introduction of smaller groups to the 5-position of cyclohexanedione and negative charges to the 3-position of the benzene ring enhanced the herbicidal activity. A molecular structure comparison demonstrated that compound III-29 was beneficial to plant absorption and conduction. Molecular docking and molecular dynamics simulations further verified the stability of the complex formed by compound III-29 and AtHPPD. Thus, this study may provide insights into the development of green and efficient herbicides.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase , Arabidopsis , Drug Design , Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Herbicides/chemistry , Herbicides/pharmacology , Herbicides/chemical synthesis , 4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , 4-Hydroxyphenylpyruvate Dioxygenase/chemistry , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Arabidopsis/drug effects , Arabidopsis/growth & development , Structure-Activity Relationship , Molecular Structure , Ketones/chemistry , Ketones/pharmacology , Ketones/chemical synthesis , Cyclohexanones/chemistry , Cyclohexanones/pharmacology , Cyclohexanones/chemical synthesis , Triticum/chemistry , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/metabolism
6.
Int J Biol Macromol ; 271(Pt 2): 132731, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815945

ABSTRACT

We explored the effect of inhibition of thioredoxin interacting protein (Txnip) on neuroprotection in Müller cells under high glucose. Wild-type (WT) and Txnip knockout (Txnip-/-) mice were used to establish a streptozotocin (STZ)-induced diabetes model and a Müller cells high glucose model. We detected BDNF expression and PI3K/AKT/CREB pathway activation levels in the retina and Müller cells of each group in vivo and in vitro experiments. The Txnip-/- STZ group showed higher expression of BDNF and phosphorylation of PI3K/AKT/CREB in retina, and less retinal photoreceptor apoptosis was observed in Txnip-/- diabetic group than in WT. After using an inhibitor of PI3K signaling pathway, BDNF expression was reduced; In vitro co-cultured with Müller cells in different groups, 661 W cells showed different situations, Txnip-/- Müller cells maximum downregulated Cleaved-caspase 3 expression in 661 W, accompanied by an increase in Bcl-2/Bax ratio. These findings indicate that inhibiting endogenous Txnip in mouse Müller cells can promote their expression and secretion of BDNF, thereby reducing HG induced photoreceptor apoptosis and having important neuroprotective effects on DR. The regulation of BDNF expression by Txnip may be achieved by activating the PI3K/AKT/CREB pathway. This study suggests that regulating Txnip may be a potential target for DR treatment.

7.
Sci Data ; 11(1): 439, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698022

ABSTRACT

China, as the world's biggest soybean importer and fourth-largest producer, needs accurate mapping of its planting areas for global food supply stability. The challenge lies in gathering and collating ground survey data for different crops. We proposed a spatiotemporal migration method leveraging vegetation indices' temporal characteristics. This method uses a feature space of six integrals from the crops' phenological curves and a concavity-convexity index to distinguish soybean and non-soybean samples in cropland. Using a limited number of actual samples and our method, we extracted features from optical time-series images throughout the soybean growing season. The cloud and rain-affected data were supplemented with SAR data. We then used the random forest algorithm for classification. Consequently, we developed the 10-meter resolution ChinaSoybean10 maps for the ten primary soybean-producing provinces from 2019 to 2022. The map showed an overall accuracy of about 93%, aligning significantly with the statistical yearbook data, confirming its reliability. This research aids soybean growth monitoring, yield estimation, strategy development, resource management, and food scarcity mitigation, and promotes sustainable agriculture.


Subject(s)
Crops, Agricultural , Glycine max , Crops, Agricultural/growth & development , China , Spatio-Temporal Analysis , Agriculture
8.
J Pers Med ; 14(5)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38793063

ABSTRACT

Background: KEYNOTE-522 resulted in FDA approval of the immune checkpoint inhibitor pembrolizumab in combination with neoadjuvant chemotherapy for patients with early-stage, high-risk, triple-negative breast cancer (TNBC). Unfortunately, pembrolizumab is associated with several immune-related adverse events (irAEs). We aimed to identify potential tumor microenvironment (TME) biomarkers which could predict patients who may attain pathological complete response (pCR) with chemotherapy alone and be spared the use of anti-PD-1 immunotherapy. Methods: Comprehensive immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on matched FFPE tumor samples from 22 stage I-III TNBC patients (14 patients treated with neoadjuvant chemotherapy alone (NAC) and 8 treated with neoadjuvant chemotherapy combined with pembrolizumab (NAC+I)). Results: Differential gene expression analysis revealed that in the NAC group, IL12B and IL13 were both significantly associated with pCR. In the NAC+I group, LCK and TP63 were significantly associated with pCR. Patients in both treatment groups exhibiting pCR tended to have greater tumor inflammation than non-pCR patients. In the NAC+I group, patients with pCR tended to have greater cell proliferation and higher PD-L1 expression, while in the NAC group, patients with pCR tended to have lower cancer testis antigen expression. Additionally, the NAC+I group trended toward a lower relative dose intensity averaged across all chemotherapy drugs, suggesting that more dose reductions or treatment delays occurred in the NAC+I group than the NAC group. Conclusions: A comprehensive understanding of immunologic factors could potentially predict pCR to chemotherapy alone, enabling the avoidance of the unnecessary treatment of these patients with checkpoint inhibitors.

9.
Free Radic Biol Med ; 221: 169-180, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782079

ABSTRACT

Spinal cord injury is a serious traumatic nervous system disorder characterized by extensive neuronal apoptosis. Oxidative stress, a key factor in neuronal apoptosis, leads to the accumulation of reactive oxygen species, making mitochondrial quality control within cells crucial. Previous studies have demonstrated zinc's anti-inflammatory and anti-apoptotic properties in protecting mitochondria during spinal cord injury treatment, yet the precise mechanisms remain elusive. Single-cell sequencing analysis has identified Lgals3 and Bax as core genes in apoptosis. This study aimed to investigate whether zinc ions protect intracellular mitochondria by inhibiting the apoptotic proteins Lgals3 and Bax. We elucidated zinc ions' key role in mitigating mitochondrial quality control dysfunction triggered by oxidative stress and confirmed this was achieved by targeting the Lgals3-Bax pathway. Zinc's inhibitory effect on this pathway not only preserved mitochondrial integrity but also significantly reduced PANoptosis after spinal cord injury. Under oxidative stress, zinc ion regulation of mitochondrial quality control reveals an organelle-targeted therapeutic strategy, offering a novel approach for more precise treatment of spinal cord injury.

10.
Int J Biol Macromol ; 270(Pt 1): 132344, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38754666

ABSTRACT

Hydroxypropyl-gamma-cyclodextrin (HPγCD) inclusion complex nanofibers (Lut/HPγCD-IC-NF) containing Luteolin (Lut) were prepared by electrospinning technology. Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) spectra confirmed the formation of Lut/HPγCD-IC-NF. Scanning electron microscopy (SEM) images showed that the morphology of Lut/HPγCD-IC-NF was uniform and bead-free, suggesting that self-assembled aggregates, macromolecules with higher molecular weights, were formed by strong hydrogen bonding interactions between the cyclodextrin inclusion complexes. Confocal laser scanning microscopy (CLSM) images showed that Lut was distributed in Lut/HPγCD-IC-NF. Proton nuclear magnetic resonance (1H NMR) spectroscopy revealed the change in chemical shift of the proton peak between Lut and HPγCD, confirming the formation of inclusion complex. Thermogravimetric analysis (TGA) proved that Lut/HPγCD-IC-NF had good thermal stability. The phase solubility test confirmed that HPγCD had a solubilizing effect on Lut. When the solubility of HPγCD reached 10 mM, the solubility of Lut increased by 15-fold. The drug loading test showed that the content of Lut in fibers reached 8.57 ± 0.02 %. The rapid dissolution experiment showed that Lut/HPγCD-IC-NF dissolved within 3 s. The molecular simulation provides three-dimensional evidence for the formation of inclusion complexes between Lut and HPγCD. Antibacterial experiments showed that Lut/HPγCD-IC-NF had enhanced antibacterial activity against S. aureus. Lut/HPγCD-IC-NF exhibited excellent antioxidant properties with a free radical scavenging ability of 89.5 ± 1.1 %. In vitro release experiments showed Lut/HPγCD-IC-NF had a higher release amount of Lut. In conclusion, Lut/HPγCD-IC-NF improved the physicochemical properties and bioavailability of Lut, providing potential applications of Lut in the pharmaceutical field.


Subject(s)
Luteolin , Nanofibers , gamma-Cyclodextrins , Nanofibers/chemistry , gamma-Cyclodextrins/chemistry , Luteolin/chemistry , Luteolin/pharmacology , Solubility , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Antioxidants/chemistry , Antioxidants/pharmacology , Staphylococcus aureus/drug effects , Spectroscopy, Fourier Transform Infrared , Picrates/chemistry , Biphenyl Compounds/chemistry
11.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598318

ABSTRACT

Mesosulfuron-methyl, an inhibitor of acetolactate synthase (ALS), has been extensively used in wheats. However, it can damage wheat (Triticum aestivum) and even lead to crop death. Herbicide safeners selectively shield crops from such damage without compromising weed control. To mitigate the phytotoxicity of mesosulfuron-methyl in crops, several purine derivatives were developed based on active substructure splicing. The synthesized title compounds underwent thorough characterization using infrared spectroscopy, 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), and high-resolution mass spectrometry. We evaluated chlorophyll and glutathione contents as well as various enzyme activities to evaluate the safer activity of these compounds. Compounds III-3 and III-7 exhibited superior activity compared with the safener mefenpyr-diethyl. Molecular structure analysis, along with predictions of absorption, distribution, metabolism, excretion, and toxicity, indicated that compound III-7 shared pharmacokinetic traits with the commercial safener mefenpyr-diethyl. Molecular docking simulations revealed that compound III-7 competitively bound to the ALS active site with mesosulfuron-methyl, elucidating the protective mechanism of the safeners. Overall, this study highlights purine derivatives as potential candidates for novel safener development.

12.
BMJ Open ; 14(4): e080211, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38589256

ABSTRACT

OBJECTIVES: The elimination of mother-to-child transmission (MTCT) of syphilis has been set as a public health priority. However, an instrument to predict the MTCT of syphilis is not available. We aimed to develop and validate an intuitive nomogram to predict the individualised risk of MTCT in pregnant women with syphilis in China. DESIGN: Retrospective cohort study. SETTING: Data was acquired from the National Information System of Prevention of MTCT of Syphilis in Guangdong province between 2011 and 2020. PARTICIPANTS: A total of 13 860 pregnant women with syphilis and their infants were included and randomised 7:3 into the derivation cohort (n=9702) and validation cohort (n=4158). PRIMARY OUTCOME MEASURES: Congenital syphilis. RESULTS: Among 13 860 pregnant women with syphilis and their infants included, 1370 infants were diagnosed with congenital syphilis. Least absolute shrinkage and selection operator regression and multivariable logistic regression showed that age, ethnicity, registered residence, marital status, number of pregnancies, transmission route, the timing of syphilis diagnosis, stage of syphilis, time from first antenatal care to syphilis diagnosis and toluidine red unheated serum test titre were predictors of MTCT of syphilis. A nomogram was developed based on the predictors, which demonstrated good calibration and discrimination with an area under the curve of the receiver operating characteristic of 0.741 (95% CI: 0.728 to 0.755) and 0.731 (95% CI: 0.710 to 0.752) for the derivation and validation cohorts, respectively. The net benefit of the predictive models was positive, demonstrating a significant potential for clinical decision-making. We have also developed a web calculator based on this prediction model. CONCLUSIONS: Our nomogram exhibited good performance in predicting individualised risk for MTCT of syphilis, which may help guide early and personalised prevention for MTCT of syphilis.


Subject(s)
Pregnancy Complications, Infectious , Syphilis, Congenital , Syphilis , Infant , Pregnancy , Female , Humans , Pregnant Women , Syphilis/diagnosis , Syphilis/epidemiology , Pregnancy Complications, Infectious/diagnosis , Pregnancy Complications, Infectious/epidemiology , Pregnancy Complications, Infectious/drug therapy , Syphilis, Congenital/diagnosis , Syphilis, Congenital/prevention & control , Nomograms , Retrospective Studies , Infectious Disease Transmission, Vertical/prevention & control
13.
PLoS One ; 19(4): e0299234, 2024.
Article in English | MEDLINE | ID: mdl-38630770

ABSTRACT

OBJECTIVES: The goal of this investigation was to identify the main compounds and the pharmacological mechanism of the traditional Chinese medicine formulation, Gong Ying San (GYS), by infrared spectral absorption characteristics, metabolomics, network pharmacology, and molecular-docking analysis for mastitis. The antibacterial and antioxidant activities were determined in vitro. METHODS: The chemical constituents of GYS were detected by ultra-high-performance liquid chromatography Q-extractive mass spectrometry (UHPLC-QE-MS). Related compounds were screened from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP, http://tcmspw.com/tcmsp.php) and the Encyclopedia of Traditional Chinese Medicine (ETCM, http://www.tcmip.cn/ETCM/index.php/Home/) databases; genes associated with mastitis were identified in DisGENT. A protein-protein interaction (PPI) network was generated using STRING. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment screening was conducted using the R module. Molecular-docking analyses were performed with the AutoDockTools V1.5.6. RESULTS: Fifty-four possible compounds in GYS with forty likely targets were found. The compound-target-network analysis showed that five of the ingredients, quercetin, luteolin, kaempferol, beta-sitosterol, and stigmasterol, had degree values >41.6, and the genes TNF, IL-6, IL-1ß, ICAM1, CXCL8, CRP, IFNG, TP53, IL-2, and TGFB1 were core targets in the network. Enrichment analysis revealed that pathways associated with cancer, lipids, atherosclerosis, and PI3K-Akt signaling pathways may be critical in the pharmacology network. Molecular-docking data supported the hypothesis that quercetin and luteolin interacted well with TNF-α and IL-6. CONCLUSIONS: An integrative investigation based on a bioinformatics-network topology provided new insights into the synergistic, multicomponent mechanisms of GYS's anti-inflammatory, antibacterial, and antioxidant activities. It revealed novel possibilities for developing new combination medications for reducing mastitis and its complications.


Subject(s)
Drugs, Chinese Herbal , Mastitis , Animals , Female , Humans , Cattle , Network Pharmacology , Antioxidants , Interleukin-6 , Luteolin , Phosphatidylinositol 3-Kinases , Quercetin , Anti-Bacterial Agents , Molecular Docking Simulation , Medicine, Chinese Traditional
14.
Medicine (Baltimore) ; 103(17): e37854, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669433

ABSTRACT

Granulomatous lobular mastitis (GLM) is an idiopathic inflammatory breast disease that tends to recur on the same side. With the accumulation of clinical cases, it has been observed that GLM can also occur contralaterally. Currently, most studies on GLM focus on treatment methods and risk factors for ipsilateral recurrence, and there are few reports on bilateral GLM. The study aimed to summarize the clinical characteristics of patients with bilateral GLM by reviewing their clinical data, and to discuss the risk factors affecting the occurrence of bilateral GLM. A retrospective study of the medical records database of patients with GLM admitted between May 2019 and August 2022 was performed. Patients were divided into bilateral GLM group (bilateral GLM group) and unilateral GLM patients (unilateral GLM group). Demographic and clinical characteristics, treatment, and follow-up were collected and analyzed. In this study, by reviewing the clinical data of 59 cases of bilateral GLM, we found that the median time between the onset of bilateral GLM on both sides was 6.63 (0-18) months. Additionally, because of the simultaneous or interval onset on both sides, the duration of the disease was longer compared to unilateral cases. Regarding the history of external hospital treatment, it was found that about 57.63% of patients with bilateral GLM received 2 or more treatment modalities, with a higher involvement of herbal medicine. Meanwhile, by counting the clinical data of the 2 groups of patients with bilateral GLM and unilateral GLM, it was shown by univariate analysis that fertility, nipple development, absolute CD4 value, and CD4/CD8 ratio were associated with contralateral onset of GLM in both groups, with inverted nipple being an independent risk factor.


Subject(s)
Granulomatous Mastitis , Humans , Female , Risk Factors , Retrospective Studies , Adult , Granulomatous Mastitis/epidemiology , Granulomatous Mastitis/diagnosis , Middle Aged , Recurrence
15.
Fitoterapia ; 175: 105974, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38663563

ABSTRACT

Alhagi honey is derived from the secretory granules of Alhagi pseudoalhagi Desv., a leguminous plant commonly known as camelthorn. Modern medical research has demonstrated that the extract of Alhagi honey possesses regulatory properties for the gastrointestinal tract and immune system, as well as exerts anti-tumor, anti-oxidative, anti-inflammatory, anti-bacterial, and hepatoprotective effects. The aim of this study was to isolate and purify oligosaccharide monomers (referred to as Mel) from camelthorn and elucidate their structural characteristics. Subsequently, the impact of Mel on liver injury induced by carbon tetrachloride (CCl4) in mice was investigated. The analysis identified the isolated oligosaccharide monomer (α-D-Glcp-(1 â†’ 3)-ß-D-Fruf-(2 â†’ 1)-α-D-Glcp), with the molecular formula C18H32O16. In a mouse model of CCl4-induced liver fibrosis, Mel demonstrated significant therapeutic effects by attenuating the development of fibrosis. Moreover, it enhanced anti-oxidant enzyme activity (glutathione peroxidase and superoxide dismutase) in liver tissues, thereby reducing oxidative stress markers (malondialdehyde and reactive oxygen species). Mel also improved serum albumin levels, lowered liver enzyme activities (aspartate aminotransferase and alanine aminotransferase), and decreased inflammatory factors (tumor necrosis factor-alpha, interleukin-1 beta, and interleukin-6). Immunohistochemistry, immunofluorescence, and western blotting analyses confirmed the ability of Mel to downregulate hepatic stellate cell-specific markers (collagen type I alpha 1 chain, alpha-smooth muscle actin, transforming growth factor-beta 1. Non-targeted metabolomics analysis revealed the influence of Mel on metabolic pathways related to glutathione, niacin, pyrimidine, butyric acid, and amino acids. In conclusion, the results of our study highlight the promising potential of Mel, derived from Alhagi honey, as a viable candidate drug for treating liver fibrosis. This discovery offers a potentially advantageous option for individuals seeking natural and effective means to promote liver health.


Subject(s)
Honey , Liver Cirrhosis , Oligosaccharides , Animals , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/chemically induced , Oligosaccharides/pharmacology , Oligosaccharides/isolation & purification , Oligosaccharides/chemistry , Male , Fabaceae/chemistry , Carbon Tetrachloride , Liver/drug effects , Liver/pathology , Molecular Structure , Oxidative Stress/drug effects , Antioxidants/pharmacology , Superoxide Dismutase/metabolism , Glutathione Peroxidase/metabolism , Malondialdehyde/metabolism
16.
J Agric Food Chem ; 72(11): 5625-5635, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38447070

ABSTRACT

Protoporphyrinogen oxidase (PPO, EC 1.3.3.4) catalyzes the oxidation of protoporphyrinogen IX to protoporphyrin IX, which is a key step in the synthesis of porphyrins in vivo. PPO inhibitors use protoporphyrinogen oxidase as the target and block the biosynthesis process of porphyrin by inhibiting the activity of the enzyme, eventually leading to plant death. In this paper, phenyl triazolinone was used as the parent structure, and the five-membered heterocycle with good herbicidal activity was introduced by using the principle of substructure splicing. According to the principle of bioisosterism, the sulfur atoms on the thiophene ring were replaced with oxygen atoms. Finally, 33 phenyl triazolinones and their derivatives were designed and synthesized, and their characterizations and biological activities were investigated. The in vitro PPO inhibitory activity and greenhouse herbicidal activity of 33 target compounds were determined, and compound D4 with better activity was screened out. The crop safety determination, field weeding effect determination, weeding spectrum determination, and crop metabolism study were carried out. The results showed that compound D4 showed good safety to corn, soybean, wheat, and peanut but poor selectivity to cotton. The field weeding effect of this compound is comparable to that of the commercial herbicide sulfentrazone. The herbicidal spectrum experiment showed that compound D4 had a wide herbicidal spectrum and a good growth inhibition effect on dicotyledonous weeds. Molecular docking results showed that compound D4 forms a hydrogen bond with amino acid residue Arg-98 in the tobacco mitochondria (mtPPO)-active pocket and forms two π-π stacking interactions with Phe-392. This indicates that compound D4 has stronger PPO inhibitory activity. This indicates that compound D4 has wide prospects for development.


Subject(s)
Enzyme Inhibitors , Herbicides , Molecular Docking Simulation , Protoporphyrinogen Oxidase , Enzyme Inhibitors/chemistry , Herbicides/chemistry , Plant Weeds , Structure-Activity Relationship
17.
Adv Mater ; : e2313524, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453665

ABSTRACT

Crystallization orientation plays a crucial role in determining the performance and stability of perovskite solar cells (PVSCs), whereas effective strategies for realizing oriented perovskite crystallization is still lacking. Herein, a facile and efficient top-down strategy is reported to manipulate the crystallization orientation via treating perovskite wet film with propylamine chloride (PACl) before annealing. The PA+ ions tend to be adsorbed on the (001) facet of the perovskite surface, resulting in the reduced cleavage energy to induce (001) orientation-dominated growth of perovskite film and then reduce the temperature of phase transition, meanwhile, the penetrating Cl ions further regulate the crystallization process. As-prepared (001)-dominant perovskite films exhibit the ameliorative film homogeneity in terms of vertical and horizontal scale, leading to alleviated lattice mismatch and lowered defect density. The resultant PVSC devices deliver a champion power conversion efficiency (PCE) of 25.07% with enhanced stability, and the unencapsulated PVSC device maintains 95% of its initial PCE after 1000 h of operation at the maximum power point under simulated AM 1.5G illumination.

18.
Brain Behav ; 14(3): e3457, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450910

ABSTRACT

INTRODUCTION: Repeated exposure to cocaine induces microglial activation. Cocaine exposure also induces a release of high mobility group box-1 (HMGB1) from neurons into the extracellular space in the nucleus accumbens (NAc). HMGB1 is an important late inflammatory mediator of microglial activation. However, whether the secretion of HMGB1 acts on microglia or contributes to cocaine addiction is largely unknown. METHODS: Rats were trained by intraperitoneal cocaine administration and cocaine-induced conditioned place preference (CPP). Expression of HMGB1 was regulated by viral vectors. Activation of microglia was inhibited by minocycline. Interaction of HMGB1 and the receptor for advanced glycation end products (RAGE) was disrupted by peptide. RESULTS: Cocaine injection facilitated HMGB1 signaling, together with the delayed activation of microglia concurrently in the NAc. Furthermore, the inhibition of HMGB1 or microglia activation attenuated cocaine-induced CPP. Box A, a specific antagonist to interrupt the interaction of HMGB1 and RAGE, abolished the expression of cocaine reward memory. Meanwhile, the inhibition of HMGB1-RAGE interaction suppressed cocaine-induced microglial activation, as well as the consolidation of cocaine-induced memory. CONCLUSION: All above results suggest that the neural HMGB1 induces activation of microglia through RAGE, which contributes to the consolidation of cocaine reward memory. These findings offer HMGB1-RAGE axis as a new target for the treatment of drug addiction.


Subject(s)
Cocaine , HMGB1 Protein , Animals , Rats , Nucleus Accumbens , Microglia , Receptor for Advanced Glycation End Products , Cocaine/pharmacology
19.
Sci Rep ; 14(1): 4232, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38379084

ABSTRACT

Triple-negative breast cancer (TNBC) is a type of breast cancer with poor prognosis, which is prone to distant metastasis and therapy resistance. The presence of neutrophil extracellular traps (NETs) contributes to the progression of breast cancer and is an efficient predictor of TNBC. We obtained the bulk and single-cell RNA sequencing data from public databases. Firstly, we identified five NET-related genes and constructed NET-related subgroups. Then, we constructed a risk index with three pivotal genes based on the differentially expressed genes between subgroups. Patients in the high-risk group had worse prognosis, clinicopathological features, and therapy response than low-risk group. Functional enrichment analysis revealed that the low-risk group was enriched in Wnt signaling pathway, and surprisingly, the drug sensitivity prediction showed that Wnt signaling pathway inhibitors had higher drug sensitivity in the low-risk group. Finally, verification experiments in vitro based on MDA-MB-231 and BT-549 cells showed that tumor cells with low-risk scores had less migration, invasion, and proliferative abilities and high drug sensitivity to Wnt signaling pathway inhibitors. In this study, multi-omics analysis revealed that genes associated with NETs may influence the occurrence, progression, and treatment of TNBC. Moreover, the bioinformatics analysis and cell experiments demonstrated that the risk index could predict the population of TNBC likely to benefit from treatment with Wnt signaling pathway inhibitors.


Subject(s)
Extracellular Traps , Triple Negative Breast Neoplasms , Humans , Wnt Signaling Pathway/genetics , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Cell Line, Tumor , Extracellular Traps/metabolism , Prognosis
20.
J Transl Med ; 22(1): 141, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38326843

ABSTRACT

BACKGROUND: Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS: Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS: The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS: CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Male , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen/metabolism , Cetrimonium/therapeutic use , Retrospective Studies , Testis/chemistry , Testis/metabolism , Testis/pathology , Antigens, Neoplasm , Biomarkers, Tumor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...