Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
bioRxiv ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798606

ABSTRACT

The functional connectome changes with aging. We systematically evaluated aging related alterations in the functional connectome using a whole-brain connectome network analysis in 39,675 participants in UK Biobank project. We used adaptive dense network discovery tools to identify networks directly associated with aging from resting-state fMRI data. We replicated our findings in 499 participants from the Lifespan Human Connectome Project in Aging study. The results consistently revealed two motor-related subnetworks (both permutation test p-values <0.001) that showed a decline in resting-state functional connectivity (rsFC) with increasing age. The first network primarily comprises sensorimotor and dorsal/ventral attention regions from precentral gyrus, postcentral gyrus, superior temporal gyrus, and insular gyrus, while the second network is exclusively composed of basal ganglia regions, namely the caudate, putamen, and globus pallidus. Path analysis indicates that white matter fractional anisotropy mediates 19.6% (p<0.001, 95% CI [7.6% 36.0%]) and 11.5% (p<0.001, 95% CI [6.3% 17.0%]) of the age-related decrease in both networks, respectively. The total volume of white matter hyperintensity mediates 32.1% (p<0.001, 95% CI [16.8% 53.0%]) of the aging-related effect on rsFC in the first subnetwork.

2.
Insights Imaging ; 15(1): 127, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38816553

ABSTRACT

OBJECTIVES: To compare the diagnostic performance of intratumoral and peritumoral features from different contrast phases of breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by building radiomics models for differentiating molecular subtypes of breast cancer. METHODS: This retrospective study included 377 patients with pathologically confirmed breast cancer. Patients were divided into training set (n = 202), validation set (n = 87) and test set (n = 88). The intratumoral volume of interest (VOI) and peritumoral VOI were delineated on primary breast cancers at three different DCE-MRI contrast phases: early, peak, and delayed. Radiomics features were extracted from each phase. After feature standardization, the training set was filtered by variance analysis, correlation analysis, and least absolute shrinkage and selection (LASSO). Using the extracted features, a logistic regression model based on each tumor subtype (Luminal A, Luminal B, HER2-enriched, triple-negative) was established. Ten models based on intratumoral or/plus peritumoral features from three different phases were developed for each differentiation. RESULTS: Radiomics features extracted from delayed phase DCE-MRI demonstrated dominant diagnostic performance over features from other phases. However, the differences were not statistically significant. In the full fusion model for differentiating different molecular subtypes, the most frequently screened features were those from the delayed phase. According to the Shapley additive explanation (SHAP) method, the most important features were also identified from the delayed phase. CONCLUSIONS: The intratumoral and peritumoral radiomics features from the delayed phase of DCE-MRI can provide additional information for preoperative molecular typing. The delayed phase of DCE-MRI cannot be ignored. CRITICAL RELEVANCE STATEMENT: Radiomics features extracted and radiomics models constructed from the delayed phase of DCE-MRI played a crucial role in molecular subtype classification, although no significant difference was observed in the test cohort. KEY POINTS: The molecular subtype of breast cancer provides a basis for setting treatment strategy and prognosis. The delayed-phase radiomics model outperformed that of early-/peak-phases, but no differently than other phases or combinations. Both intra- and peritumoral radiomics features offer valuable insights for molecular typing.

3.
Schizophr Res ; 269: 58-63, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38733800

ABSTRACT

N-acetylasparate and lactate are two prominent brain metabolites closely related to mitochondrial functioning. Prior research revealing lower levels of NAA and higher levels of lactate in the cerebral cortex of patients with schizophrenia suggest possible abnormalities in the energy supply pathway necessary for brain function. Given that stress and adversity are a strong risk factor for a variety of mental health problems, including psychotic disorders, we investigated the hypothesis that stress contributes to abnormal neuroenergetics in patients with schizophrenia. To test this hypothesis, we used the Stress and Adversity Inventory (STRAIN) to comprehensively assess the lifetime stressor exposure profiles of 35 patients with schizophrenia spectrum disorders and 33 healthy controls who were also assessed with proton magnetic resonance spectroscopy at the anterior cingulate cortex using 3 Tesla scanner. Consistent with the hypothesis, greater lifetime stressor exposure was significantly associated with lower levels of N-acetylasparate (ß = -0.36, p = .005) and higher levels of lactate (ß = 0.43, p = .001). Moreover, these results were driven by patients, as these associations were significant for the patient but not control group. Though preliminary, these findings suggest a possible role for stress processes in the pathophysiology of abnormal neuroenergetics in schizophrenia.

4.
J Pharm Biomed Anal ; 245: 116163, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38657365

ABSTRACT

Psoriasis is a refractory inflammatory skin disorder in which keratinocyte hyperproliferation is a crucial pathogenic factor. Up to now, it is commonly acknowledged that psoriasis has a tight connection with metabolic disorders. Withanolides from Datura metel L. (DML) have been proved to possess anti-inflammatory and anti-proliferative properties in multiple diseases including psoriasis. Withanolide B (WB) is one of the abundant molecular components in DML. However, existing experimental studies regarding the potential effects and mechanisms of WB on psoriasis still remain lacking. Present study aimed to integrate network pharmacology and untargeted metabolomics strategies to investigate the therapeutic effects and mechanisms of WB on metabolic disorders in psoriasis. In our study, we observed that WB might effectively improve the symptoms of psoriasis and alleviate the epidermal hyperplasia in imiquimod (IMQ)-induced psoriasis-like mice. Both network pharmacology and untargeted metabolomics results suggested that arachidonic acid metabolism and arginine and proline metabolism pathways were linked to the treatment of psoriasis with WB. Meanwhile, we also found that WB may affect the expression of regulated enzymes 5-lipoxygenase (5-LOX), 12-LOX, ornithine decarboxylase 1 (ODC1) and arginase 1 (ARG1) in the arachidonic acid metabolism and arginine and proline metabolism pathways. In summary, this paper showed the potential metabolic mechanisms of WB against psoriasis and suggested that WB would have greater potential in psoriasis treatment.


Subject(s)
Metabolomics , Network Pharmacology , Psoriasis , Withanolides , Psoriasis/drug therapy , Psoriasis/metabolism , Withanolides/pharmacology , Metabolomics/methods , Animals , Mice , Network Pharmacology/methods , Male , Disease Models, Animal , Datura metel/chemistry , Imiquimod , Anti-Inflammatory Agents/pharmacology , Mice, Inbred BALB C
5.
World J Hepatol ; 16(2): 264-278, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38495271

ABSTRACT

BACKGROUND: Liver fibrosis is a formidable global medical challenge, with no effective clinical treatment currently available. Yinhuang granule (YHG) is a proprietary Chinese medicine comprising Scutellariae Radix and Lonicerae Japonicae Flos. It is frequently used for upper respiratory tract infections, pharyngitis, as well as acute and chronic tonsillitis. AIM: To investigate the potential of YHG in alleviating carbon tetrachloride (CCl4)-induced liver fibrosis in mice. METHODS: To induce a hepatic fibrosis model in mice, this study involved intraperitoneal injections of 2 mL/kg of CCl4 twice a week for 4 wk. Meanwhile, liver fibrosis mice in the low dose of YHG (0.4 g/kg) and high dose of YHG (0.8 g/kg) groups were orally administered YHG once a day for 4 wk. Serum alanine/aspartate aminotransferase (ALT/AST) activity and liver hydroxyproline content were detected. Sirius red and Masson's trichrome staining assay were conducted. Real-time polymerase chain reaction, western-blot and enzyme-linked immunosorbent assay were conducted. Liver glutathione content, superoxide dismutase activity level, reactive oxygen species and protein carbonylation amount were detected. RESULTS: The administration of YHG ameliorated hepatocellular injury in CCl4-treated mice, as reflected by decreased serum ALT/AST activity and improved liver histological evaluation. YHG also attenuated liver fibrosis, evident through reduced liver hydroxyproline content, improvements in Sirius red and Masson's trichrome staining, and lowered serum hyaluronic acid levels. Furthermore, YHG hindered the activation of hepatic stellate cells (HSCs) and ameliorated oxidative stress injury and inflammation in liver from CCl4-treated mice. YHG prompted the nuclear accumulation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated the expression of Nrf2-dependent downstream antioxidant genes. In addition, YHG promoted mitochondrial biogenesis in liver from CCl4-treated mice, as demonstrated by increased liver adenosine triphosphate content, mitochondrial DNA levels, and the expression of peroxisome proliferator-activated receptor gamma coactivator 1 alpha and nuclear respiratory factor 1. CONCLUSION: YHG effectively attenuates CCl4-induced liver fibrosis in mice by inhibiting the activation of HSCs, reducing inflammation, alleviating liver oxidative stress damage through Nrf2 activation, and promoting liver mitochondrial biogenesis.

6.
Phytomedicine ; 128: 155418, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38518647

ABSTRACT

BACKGROUND: Scutellaria barbata D. Don (SB), commonly known as Ban Zhi Lian and firstly documented by Shigong Chen, is a dried whole plant that has been studied for its therapeutic effects on breast cancer, colon cancer, and prostate cancer. Among its various compounds, scutellarin (SCU) has been demonstrated with anti-tumor effects. PURPOSE: This study aimed to evaluate the effects of SB water extract (SBW) and scutellarin on breast cancer stem cells (BCSCs), and to investigate their potential therapeutic effects on breast tumors in mice. METHODS: BCSCs were enriched from human breast cancer cells (MDA-MB-231 and MDA-MB-361) and their characteristics were analyzed. The effects of varying concentrations of SBW and scutellarin on cell viability, proliferation, self-renewal, and migration abilities were studied, along with the underlying mechanisms. The in vivo anti-tumor effects of scutellarin were further evaluated in SCID/NOD mice. Firstly, mice were inoculated with naïve BCSCs and subjected to treatment with scutellarin or vehicle. Secondly, BCSCs were pre-treated with scutellarin or vehicle prior to inoculation into mice. RESULTS: The derived BCSCs expressed CD44, CD133 and ALDH1, but not CD24, indicating that BCSCs have been successfully induced from both MDA-MB-231 and MDA-MB-361 cells. Both SBW and scutellarin reduced the viability, proliferation, sphere and colony formation, and migration of BCSCs. In mice with tumors derived from naïve BCSCs, scutellarin significantly reduced tumor growth, expression of proliferative (Ki67) and stem cell markers (CD44), and lung metastasis. In addition, pre-treatment with scutellarin also slowed tumor growth. Western blot results suggested the involvement of Wnt/ß-catenin, NF-κB, and PTEN/Akt/mTOR signaling pathways underlying the inhibitory effects of scutellarin. CONCLUSION: Our study demonstrated for the first time that both SB water extract and scutellarin could reduce the proliferation and migration of BCSCs in vitro. Scutellarin was shown to possess novel inhibitory activities in BCSCs progression. These findings suggest that Scutellaria barbata water extract, in particular, scutellarin, may have potential to be further developed as an adjuvant therapy for reducing breast cancer recurrence.


Subject(s)
Apigenin , Breast Neoplasms , Cell Proliferation , Glucuronates , Mice, Inbred NOD , Neoplastic Stem Cells , Scutellaria , Animals , Apigenin/pharmacology , Scutellaria/chemistry , Glucuronates/pharmacology , Neoplastic Stem Cells/drug effects , Humans , Female , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Mice, SCID , Antineoplastic Agents, Phytogenic/pharmacology , Mice , Plant Extracts/pharmacology , Cell Movement/drug effects , Cell Survival/drug effects , Xenograft Model Antitumor Assays , Hyaluronan Receptors/metabolism
7.
Brain Stimul ; 17(2): 324-332, 2024.
Article in English | MEDLINE | ID: mdl-38453003

ABSTRACT

The smoking rate is high in patients with schizophrenia. Brain stimulation targeting conventional brain circuits associated with nicotine addiction has also yielded mixed results. We aimed to identify alternative circuitries associated with nicotine addiction in both the general population and schizophrenia, and then test whether modulation of such circuitries may alter nicotine addiction behaviors in schizophrenia. In Study I of 40 schizophrenia smokers and 51 non-psychiatric smokers, cross-sectional neuroimaging analysis identified resting state functional connectivity (rsFC) between the dorsomedial prefrontal cortex (dmPFC) and multiple extended amygdala regions to be most robustly associated with nicotine addiction severity in healthy controls and schizophrenia patients (p = 0.006 to 0.07). In Study II with another 30 patient smokers, a proof-of-concept, patient- and rater-blind, randomized, sham-controlled rTMS design was used to test whether targeting the newly identified dmPFC location may causally enhance the rsFC and reduce nicotine addiction in schizophrenia. Although significant interactions were not observed, exploratory analyses showed that this dmPFC-extended amygdala rsFC was enhanced by 4-week active 10Hz rTMS (p = 0.05) compared to baseline; the severity of nicotine addiction showed trends of reduction after 3 and 4 weeks (p ≤ 0.05) of active rTMS compared to sham; Increased rsFC by active rTMS predicted reduction of cigarettes/day (R = -0.56, p = 0.025 uncorrected) and morning smoking severity (R = -0.59, p = 0.016 uncorrected). These results suggest that the dmPFC-extended amygdala circuit may be linked to nicotine addiction in schizophrenia and healthy individuals, and future efforts targeting its underlying pathophysiological mechanisms may yield more effective treatment for nicotine addiction.


Subject(s)
Magnetic Resonance Imaging , Schizophrenia , Tobacco Use Disorder , Transcranial Magnetic Stimulation , Humans , Schizophrenia/diagnostic imaging , Schizophrenia/physiopathology , Schizophrenia/therapy , Tobacco Use Disorder/therapy , Tobacco Use Disorder/diagnostic imaging , Tobacco Use Disorder/physiopathology , Male , Adult , Female , Transcranial Magnetic Stimulation/methods , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Middle Aged , Amygdala/diagnostic imaging , Amygdala/physiopathology , Neuroimaging , Cross-Sectional Studies
8.
J Addict Dis ; : 1-8, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38400724

ABSTRACT

BACKGROUND: There has been extensive research demonstrating the effectiveness of medications for opioid use disorder (MOUD) but limited investigation into its long-term retention rate. OBJECTIVE: Assess the long-term treatment retention of a buprenorphine-based MOUD clinic with additional stratifications by age and gender. METHODS: This retrospective study analyzed 10-years of data from a MOUD clinic in West Virginia that served 3,255 unique patients during the study period (2009-2019). Retention was measured by summation of total treatment days with a new episode of care defined as re-initiating buprenorphine treatment after 60+ consecutive days of nonattendance. Kaplan-Meier survival analysis, with the log-rank test, was used to compare retention by gender and age. RESULTS: The mean age was 38 (SD = 10.6) and 95% were non-Hispanic white. Irrespective of treatment episode, 56.8% of patients were retained ≥ 90 days, and the overall median time in treatment was 112 days. Considering only the first treatment episode, 48.4% of 3,255 patients were retained at least 90 days and the overall median was 77 days. Female patients had a ≥ 90 day retention rate of 52.2% for the first admission and 60.1% for multiple admissions, both significantly higher than those of male subjects (44.1% and 53.0%). Additionally, patients ≤ 24 years old had the lowest rate of treatment retention, while patients aged ≥ 35 had the highest. CONCLUSIONS: This study adds to the limited data regarding long-term retention in MOUD. Our findings indicate gender and age were highly correlated with retention in MOUD treatment.

9.
Anal Chim Acta ; 1292: 342255, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38309848

ABSTRACT

BACKGROUND: ß-thalassemia is a blood disorder caused by autosomal mutations. Gene modulation therapy to activate the γ-globin gene to induce fetal hemoglobin (HbF) synthesis has become a new option for the treatment of ß-thalassemia. MicroRNA-210 (miR-210) contributes to studying the mechanism regulating γ-globin gene expression and is a potential biomarker for rapid ß-thalassemia screening. Traditional miRNA detection methods perform well but necessitate complex and time-consuming miRNA sample processing. Therefore, the development of a sensitive, accurate, and simple miRNA level monitoring method is essential. RESULTS: We have developed a non-enzymatic surface-enhanced Raman scattering (SERS) biosensor utilizing a signal cascade amplification of catalytic hairpin assembly reaction (CHA) and proximity hybridization-induced hybridization chain reaction (HCR). Au@Ag NPs were used as the SERS substrate, and methylene blue (MB)- modified DNA hairpins were used as the SERS tags. The SERS assay involved two stages: implementing the CHA-HCR cascade signal amplification strategy and conducting SERS measurements on the resulting product. The HCR was started by the products of target-triggered CHA, which formed lengthy nicked double-stranded DNA (dsDNA) on the Au@Ag NPs surface to which numerous SERS tags were attached, leading to a significant increase in the SERS signal intensity. High specificity and sensitivity for miR-210 detection was achieved by monitoring MB SERS intensity changes. The suggested SERS biosensor has a low detection limit of 5.13 fM and is capable of detecting miR-210 at concentration between 10 fM and 1.0 nM. SIGNIFICANCE: The biosensor can detect miR-210 levels in the erythrocytes of ß-thalassemia patients, enabling rapid screening for ß-thalassemia and suggesting a novel approach for investigating the regulation mechanism of miR-210 on γ-globin gene expression. In the meantime, this innovative technique has the potential to detect additional miRNAs and to become an important tool for the early diagnosis of diseases and for biomedical research.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , beta-Thalassemia , Humans , beta-Thalassemia/diagnosis , beta-Thalassemia/genetics , gamma-Globins , DNA , Biosensing Techniques/methods , Limit of Detection , Spectrum Analysis, Raman , Gold
10.
Breast Cancer Res ; 26(1): 26, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347619

ABSTRACT

BACKGROUND: MRI-based tumor shrinkage patterns (TSP) after neoadjuvant therapy (NAT) have been associated with pathological response. However, the understanding of TSP after early NAT remains limited. We aimed to analyze the relationship between TSP after early NAT and pathological response after therapy in different molecular subtypes. METHODS: We prospectively enrolled participants with invasive ductal breast cancers who received NAT and performed pretreatment DCE-MRI from September 2020 to August 2022. Early-stage MRIs were performed after the first (1st-MRI) and/or second (2nd-MRI) cycle of NAT. Tumor shrinkage patterns were categorized into four groups: concentric shrinkage, diffuse decrease (DD), decrease of intensity only (DIO), and stable disease (SD). Logistic regression analysis was performed to identify independent variables associated with pathologic complete response (pCR), and stratified analysis according to tumor hormone receptor (HR)/human epidermal growth factor receptor 2 (HER2) disease subtype. RESULTS: 344 participants (mean age: 50 years, 113/345 [33%] pCR) with 345 tumors (1 bilateral) had evaluable 1st-MRI or 2nd-MRI to comprise the primary analysis cohort, of which 244 participants with 245 tumors had evaluable 1st-MRI (82/245 [33%] pCR) and 206 participants with 207 tumors had evaluable 2nd-MRI (69/207 [33%] pCR) to comprise the 1st- and 2nd-timepoint subgroup analysis cohorts, respectively. In the primary analysis, multivariate analysis showed that early DD pattern (OR = 12.08; 95% CI 3.34-43.75; p < 0.001) predicted pCR independently of the change in tumor size (OR = 1.37; 95% CI 0.94-2.01; p = 0.106) in HR+/HER2- subtype, and the change in tumor size was a strong pCR predictor in HER2+ (OR = 1.61; 95% CI 1.22-2.13; p = 0.001) and triple-negative breast cancer (TNBC, OR = 1.61; 95% CI 1.22-2.11; p = 0.001). Compared with the change in tumor size, the SD pattern achieved a higher negative predictive value in HER2+ and TNBC. The statistical significance of complete 1st-timepoint subgroup analysis was consistent with the primary analysis. CONCLUSION: The diffuse decrease pattern in HR+/HER2- subtype and stable disease in HER2+ and TNBC after early NAT could serve as additional straightforward and comprehensible indicators of treatment response. TRIAL REGISTRATION: Trial registration at https://www.chictr.org.cn/ . REGISTRATION NUMBER: ChiCTR2000038578, registered September 24, 2020.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Humans , Middle Aged , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnostic imaging , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/genetics , Neoadjuvant Therapy , Treatment Outcome , Receptor, ErbB-2/genetics , Magnetic Resonance Imaging , Predictive Value of Tests , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Retrospective Studies
11.
Front Bioeng Biotechnol ; 12: 1327521, 2024.
Article in English | MEDLINE | ID: mdl-38415187

ABSTRACT

In this study, a novel human-size handheld magnetic particle imaging (MPI) system was developed for the high-precision detection of sentinel lymph nodes for breast cancer. The system consisted of a highly sensitive home-made MPI detection probe, a set of concentric coils pair for spatialization, a solenoid coil for uniform excitation at 8 kHz@1.5 mT, and a full mirrored coil set positioned far away from the scanning area. The mirrored coils formed an extremely effective differential pickup structure which suppressed the system noise as high as 100 dB. The different combination of the inner and outer gradient current made the field free point (FFP) move in the Z direction with a uniform intensity of 0.54T/m, while the scanning in the XY direction was implemented mechanically. The third-harmonic signal of the Superparamagnetic Iron Oxide Nanoparticles (SPIONs) at the FFP was detected and then reconstructed synchronously with the current changes. Experiment results showed that the tomographic detection limit was 30 mm in the Z direction, and the sensitivity was about 10 µg Fe SPIONs at 40 mm distance with a spatial resolution of about 5 mm. In the rat experiment, 54 µg intramuscular injected SPIONs were detected successfully in the sentinel lymph node, in which the tracer content was about 1.2% total injected Fe. Additionally, the effective detection time window was confirmed from 4 to 6 min after injection. Relevant clinical ethics are already in the application process. Large mammalian SLNB MPI experiments and 3D preoperative SLNB imaging will be performed in the future.

13.
Article in English | MEDLINE | ID: mdl-38175414

ABSTRACT

The objective of this study is to examine the potential protective effect of rosmarinic acid (RosA) encapsulated within nanoliposomes (RosA-LIP) on hepatic damage induced by iron overload. The characteristics, stability, and release of RosA-LIP in vitro were identified. The mice were randomly assigned to five groups: Control, Model, Model+DFO (DFO), Model+RosA (RosA), and Model+RosA-LIP (RosA-LIP). The iron overload model was induced by administering iron dextran (i.p.). The DFO, RosA, and RosA-LIP groups received iron dextran and were subsequently treated with DFO, RosA, and RosA-LIP for 14 days. We developed a novel formulation of RosA-LIP that exhibited stability and controlled release properties. Firstly, RosA-LIP improved liver function and ameliorated pathological changes in a mouse model of iron overload. Secondly, RosA-LIP demonstrated the ability to enhance the activities of T-SOD, GSH-Px, and CAT, while reducing the levels of MDA and 4-HNE, thereby effectively mitigating oxidative stress damage induced by iron overload. Thirdly, RosA-LIP reduced hepatic iron levels by downregulating FTL, FTH, and TfR1 levels. Additionally, RosA-LIP exerted a suppressive effect on hepcidin expression through the BMP6-SMAD1/5/8 signaling pathway. Furthermore, RosA-LIP upregulated FPN1 expression in both the liver and duodenum, thereby alleviating iron accumulation in these organs in mice with iron overload. Notably, RosA exhibited a comparable iron chelation effect, and RosA-LIP demonstrated superior efficacy in mitigating liver damage induced by excessive iron overload. RosA-LIP exhibited favorable sustained release properties, targeted delivery, and efficient protection against iron overload-induced liver damage. A schematic representation of the proposed protective mechanism of rosmarinic acid liposome during iron overload. Once RosA-LIP is transported into cells, RosA is released. On the one hand, RosA attenuates the BMP6-SMAD1/5/8-SMAD4 signaling pathway activation, leading to inhibiting hepcidin transcription. Then, the declined hepcidin contacted the inhibitory effect of FPN1 in hepatocytes and duodenum, increasing iron mobilization. On the other hand, RosA inhibits TfR1 and ferritin expression, which decreases excessive iron and oxidative damage.

14.
Psychol Med ; 54(5): 1045-1056, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37750294

ABSTRACT

BACKGROUND: Stress and depression have a reciprocal relationship, but the neural underpinnings of this reciprocity are unclear. We investigated neuroimaging phenotypes that facilitate the reciprocity between stress and depressive symptoms. METHODS: In total, 22 195 participants (52.0% females) from the population-based UK Biobank study completed two visits (initial visit: 2006-2010, age = 55.0 ± 7.5 [40-70] years; second visit: 2014-2019; age = 62.7 ± 7.5 [44-80] years). Structural equation modeling was used to examine the longitudinal relationship between self-report stressful life events (SLEs) and depressive symptoms. Cross-sectional data were used to examine the overlap between neuroimaging correlates of SLEs and depressive symptoms on the second visit among 138 multimodal imaging phenotypes. RESULTS: Longitudinal data were consistent with significant bidirectional causal relationship between SLEs and depressive symptoms. In cross-sectional analyses, SLEs were significantly associated with lower bilateral nucleus accumbal volume and lower fractional anisotropy of the forceps major. Depressive symptoms were significantly associated with extensive white matter hyperintensities, thinner cortex, lower subcortical volume, and white matter microstructural deficits, mainly in corticostriatal-limbic structures. Lower bilateral nucleus accumbal volume were the only imaging phenotypes with overlapping effects of depressive symptoms and SLEs (B = -0.032 to -0.023, p = 0.006-0.034). Depressive symptoms and SLEs significantly partially mediated the effects of each other on left and right nucleus accumbens volume (proportion of effects mediated = 12.7-14.3%, p < 0.001-p = 0.008). For the left nucleus accumbens, post-hoc seed-based analysis showed lower resting-state functional connectivity with the left orbitofrontal cortex (cluster size = 83 voxels, p = 5.4 × 10-5) in participants with high v. no SLEs. CONCLUSIONS: The nucleus accumbens may play a key role in the reciprocity between stress and depressive symptoms.


Subject(s)
Nucleus Accumbens , White Matter , Female , Humans , Middle Aged , Aged , Male , Nucleus Accumbens/diagnostic imaging , Depression/diagnostic imaging , Cross-Sectional Studies , Cerebral Cortex , Magnetic Resonance Imaging
15.
Med Phys ; 51(3): 1872-1882, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37706584

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) and Kirsten rat sarcoma viral oncogene homolog (KRAS) are mutually exclusive, and they are two important genes that are most prone to mutation in patients with non-small cell lung cancer. PURPOSE: This retrospective study investigated the ability of radiomics to predict the mutation status of EGFR and KRAS in patients with non-small cell lung cancer (NSCLC) and guide precision medicine. METHODS: Computed tomography images of 1045 NSCLC patients from five different institutions were collected, and 1204 imaging features were extracted. In the training set (EGFR: 678, KRAS: 246), Max-Relevance and Min-Redundancy and least absolute shrinkage and selection operator logistic regression were used to screen radiomics features. The combination of selected radiomics features and clinical factors was used to establish the combined models in identifying EGFR and KRAS mutation status, respectively, through stepwise logistic regression. Then, on two independent external validation sets (EGFR: 203/164, KRAS: 123/95), the performance of each model was evaluated separately, and then the overall performance of predicting the two mutation states was calculated. RESULTS: In the EGFR and KRAS groups, radiomics signatures comprised 14 and 10 radiomics features, respectively. They were mutually exclusive between the tumors with positive EGFR mutation and those with positive KRAS mutation in imaging phenotype. For the EGFR group, the area under the curve (AUC) of the combined model in the two validation sets was 0.871 (95% CI: 0.821-0.926) and 0.861 (95% CI: 0.802-0.911), respectively, whereas the AUC of the combined model in the two validation sets was 0.798 (95% CI: 0.739-0.850) and 0.778 (95% CI: 0.735-0.821), respectively, for the KRAS group. Considering both EGFR and KRAS, the overall precision, recall, and F1-score of the combined model in the two validation sets were 0.704, 0.844, and 0.768, as well as 0.754, 0.693, and 0.722, respectively. CONCLUSIONS: Our study demonstrates the potential of radiomics in the non-invasive identification of EGFR and KRAS mutation status, which may guide patients with non-small cell lung cancer to choose the most appropriate personalized treatment. This method can be used when biopsy will bring unacceptable risk to patients with NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Retrospective Studies , Proto-Oncogene Proteins p21(ras)/genetics , Tomography, X-Ray Computed/methods , ErbB Receptors/genetics , Mutation
16.
Acta Pharmacol Sin ; 45(1): 23-35, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37644131

ABSTRACT

Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.


Subject(s)
Heart Failure , Hypertension , Animals , Humans , Stroke Volume/physiology , Comorbidity , Drug Discovery
17.
Mol Cell Probes ; 73: 101944, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38049041

ABSTRACT

Ubiquitin specific protease 5 (USP5) is a vital deubiquitinating enzyme that regulates various physiological functions by removing ubiquitin chains from target proteins. This review provides an overview of the structural and functional characteristics of USP5. Additionally, we discuss the role of USP5 in regulating diverse cellular processes, including cell proliferation, apoptosis, DNA double-strand damage, methylation, heat stress, and protein quality control, by targeting different substrates. Furthermore, we describe the involvement of USP5 in several pathological conditions such as tumors, pathological pain, developmental abnormalities, inflammatory diseases, and virus infection. Finally, we introduce newly developed inhibitors of USP5. In conclusion, investigating the novel functions and substrates of USP5, elucidating the underlying mechanisms of USP5-substrate interactions, intensifying the development of inhibitors, and exploring the upstream regulatory mechanisms of USP5 in detail can provide a new theoretical basis for the treatment of various diseases, including cancer, which is a promising research direction with considerable potential. Overall, USP5 plays a critical role in regulating various physiological and pathological processes, and investigating its novel functions and regulatory mechanisms may have significant implications for the development of therapeutic strategies for cancer and other diseases.


Subject(s)
Endopeptidases , Neoplasms , Humans , Cell Proliferation , Endopeptidases/genetics , Endopeptidases/metabolism , Neoplasms/genetics , Ubiquitin/genetics , Ubiquitin/metabolism
18.
ERJ Open Res ; 9(6)2023 Nov.
Article in English | MEDLINE | ID: mdl-38152080

ABSTRACT

Background: Older adults with asthma have the greatest burden and worst outcomes, and there is increasing evidence that chronic cough (CC) is associated with asthma severity and poor prognosis. However, the clinical characteristics of older adult patients with both asthma and CC remain largely unknown. Methods: Participants with stable asthma underwent two cough assessments within 3 months to define the presence of CC. Patients were divided into four groups based on CC and age (cut-off ≥60 years). Multidimensional assessment was performed at baseline, followed by a 12-month follow-up to investigate asthma exacerbations. Logistic regression models were used to explore the interaction effect of CC and age on asthma control and exacerbations. Results: In total, 310 adult patients were prospectively recruited and divided into four groups: older CC group (n=46), older non-CC group (n=20), younger CC group (n=112) and younger non-CC group (n=132). Compared with the younger non-CC group, the older CC group had worse asthma control and quality of life and increased airflow obstruction. The older CC group showed an increase in moderate-to-severe exacerbations during the 12-month follow-up. There was a significant interaction effect of CC and ageing on the increased moderate-to-severe exacerbations (adjusted risk ratio 2.36, 95% CI 1.47-3.30). Conclusion: Older asthma patients with CC have worse clinical outcomes, including worse asthma control and quality of life, increased airway obstruction and more frequent moderate-to-severe exacerbations, which can be partly explained by the interaction between CC and ageing.

19.
bioRxiv ; 2023 Oct 28.
Article in English | MEDLINE | ID: mdl-37961161

ABSTRACT

INTRODUCTION: APOE4 is a strong genetic risk factor of Alzheimer's disease and is associated with changes in metabolism. However, the interactive relationship between APOE4 and plasma metabolites on the brain remains largely unknown. MEHODS: In the UK Biobank, we investigated the moderation effects of APOE4 on the relationship between 249 plasma metabolites derived from nuclear magnetic resonance spectroscopy on whole-brain white matter integrity, measured by fractional anisotropy using diffusion magnetic resonance imaging. RESULTS: The increase in the concentration of metabolites, mainly LDL and VLDL, is associated with a decrease in white matter integrity (b= -0.12, CI= [-0.14, -0.10]) among older APOE4 carriers, whereas an increase (b= 0.05, CI= [0.04, 0.07]) among non-carriers, implying a significant moderation effect of APOE4 (b= -0.18, CI= [-0.20,-0.15]). DISCUSSION: The results suggest that lipid metabolism functions differently in APOE4 carriers compared to non-carriers, which may inform the development of targeted interventions for APOE4 carriers to mitigate cognitive decline.

20.
JAMA Netw Open ; 6(11): e2343081, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37955897

ABSTRACT

Importance: Distressing and persistent psychoticlike experiences (PLEs) in youth are associated with greater odds of developing psychiatric conditions in adulthood. Despite this risk, it is unclear whether early PLEs show similar brain patterns compared with adults with psychiatric and neurologic conditions. Objective: To examine the degree to which persistent and distressing PLEs exhibit neural metrics that show similarity to adults with chronic psychiatric and neurologic conditions. Design, Setting, and Participants: This cohort study used Adolescent Brain Cognitive Development (ABCD) Study examining the persistence and distress associated with PLEs across the first 3 waves of data with baseline structural magnetic resonance imaging data. Analyzed data were collected between September 1, 2016, and September 27, 2021. Children were recruited from 21 research sites across the US. Exposures: Psychoticlike experiences were assessed using the Prodromal Questionnaire-Brief Child Version, and participants were categorized into groups based on the persistence and distress associated with PLEs. Main Outcomes and Measures: Cortical and subcortical regional vulnerability indices (RVIs) were created by quantifying the similarity of participants' baseline neuroimaging measures to the expected patterns found in adult neuropsychiatric samples. The PLE groups were compared on the following RVI cortical and subcortical metrics: schizophrenia spectrum disorders, bipolar disorder, major depressive disorder, Parkinson disease, Alzheimer disease, and metabolic diseases. Results: Analyses examined PLE groups created from 8242 children in the ABCD sample (52.5% male; mean [SD] age, 9.93 [0.63] years; and 56.3% White), including persistent distressing PLEs (n = 329), transient distressing PLEs (n = 396), persistent nondistressing PLEs (n = 234), transient nondistressing PLEs (n = 390), and low distressing PLEs (n = 6893) groups. Participants with persistent or transient distressing PLEs broadly showed increased subcortical RVI scores across most RVI metrics, with persistent distressing PLEs additionally showing increased scores for cortical RVI metrics. The greatest effect sizes were found for persistent distressing PLEs with cortical RVI-schizophrenia spectrum disorders (ß estimate, 1.055; 95% CI, 0.326-1.786) and RVI-Alzheimer disease (ß estimate, 2.473; 95% CI, 0.930-4.018). Conclusions and Relevance: In this cohort study of ABCD participants, the findings suggest that especially the persistent distressing PLEs in children were associated with neural metrics resembling those observed in adults with severe psychiatric and neurologic conditions. These findings support the potential use of brain-based risk scores for early identification and precision medicine approaches in the assessment of PLEs.


Subject(s)
Alzheimer Disease , Bipolar Disorder , Depressive Disorder, Major , Adult , Child , Humans , Adolescent , Male , Female , Cohort Studies , Benchmarking
SELECTION OF CITATIONS
SEARCH DETAIL
...