Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Today Bio ; 23: 100859, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033368

ABSTRACT

Background: Reducing Ca2+ content in the sarcoplasmic reticulum (SR) through ryanodine receptors (RyRs) by calcin is a potential intervention strategy for the SR Ca2+ overload triggered by ß-adrenergic stress in acute heart diseases. Methods: OpiCal-PEG-PLGA nanomicelles were prepared by thin film dispersion, of which the antagonistic effects were observed using an acute heart failure model induced by epinephrine and caffeine in mice. In addition, cardiac targeting, self-stability as well as biotoxicity were determined. Results: The synthesized OpiCa1-PEG-PLGA nanomicelles were elliptical with a particle size of 72.26 nm, a PDI value of 0.3, and a molecular weight of 10.39 kDa. The nanomicelles showed a significant antagonistic effect with 100 % survival rate to the death induced by epinephrine and caffeine, which was supported by echocardiography with significantly recovered heart rate, ejection fraction and left ventricular fractional shortening rate. The FITC labeled nanomicelles had a strong membrance penetrating capacity within 2 h and cardiac targeting within 12 h that was further confirmed by immunohistochemistry with a self-prepared OpiCa1 polyclonal antibody. Meanwhile, the nanomicelles can keep better stability and dispersibility in vitro at 4 °C rather than 20 °C or 37 °C, while maintain a low but stable plasma OpiCa1 concentration in vivo within 72 h. Finally, no obvious biotoxicities were observed by CCK-8, flow cytometry, H&E staining and blood biochemical examinations. Conclusion: Our study also provide a novel nanodelivery pathway for targeting RyRs and antagonizing the SR Ca2+ disordered heart diseases by actively releasing SR Ca2+ through RyRs with calcin.

2.
Front Pharmacol ; 14: 1200843, 2023.
Article in English | MEDLINE | ID: mdl-37346292

ABSTRACT

Background: Triple-negative breast cancer (TNBC) is one of the most prominent neoplasm disorders and lacks efficacious treatments yet. Luteolin (3',4',5,7-tetrahydroxyflavone), a natural flavonoid commonly presented in plants, has been reported to delay the progression of TNBC. However, the precise mechanism is still elusive. We aimed to elucidate the inhibition and molecular regulation mechanism of luteolin on TNBC. Methods: The effects of luteolin on the biological functions of TNBC cells were first evaluated using the corresponding assays for cell counting kit-8 assay, flow cytometry, wound-healing assay, and transwell migration assay, respectively. The mechanism of luteolin on TNBC cells was then analyzed by RNA sequencing and verified by RT-qPCR, Western blot, transmission electron microscopy, etc. Finally, in vivo mouse tumor models were constructed to further confirm the effects of luteolin on TNBC. Results: Luteolin dramatically suppressed cell proliferation, invasion, and migration while favoring cell apoptosis in a dose- and time-dependent manner. In TNBC cells treated with luteolin, SGK1 and AKT3 were significantly downregulated while their downstream gene BNIP3 was upregulated. According to the results of 3D modeling, the direct binding of luteolin to SGK1 was superior to that of AKT3. The inhibition of SGK1 promoted FOXO3a translocation into the nucleus and led to the transcription of BNIP3 both in vitro and in vivo, eventually facilitating the interaction between BNIP3 and apoptosis and autophagy protein. Furthermore, the upregulation of SGK1, induced by luteolin, attenuated the apoptosis and autophagy of the TNBC. Conclusion: Luteolin inhibits TNBC by inducing apoptosis and autophagy through SGK1-FOXO3a-BNIP3 signaling.

3.
Environ Sci Pollut Res Int ; 30(26): 69135-69149, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37131005

ABSTRACT

The overall water quality of urban rivers is closely related to the community structure and the physiochemical factors in them. In this study, the bacterial communities and physiochemical factors of the Qiujiang River, an important urban river in Shanghai, were explored. Water samples were collected from nine sites of the Qiujiang River on November 16, 2020. The water quality and bacterial diversity were studied through physicochemical detection, microbial culture and identification, luminescence bacteria method, and 16S rRNA Illumina MiSeq high-throughput sequencing technology. The water pollution of the Qiujiang River was quite serious with three water quality evaluation indexes, including Cd2+, Pb2+, and NH4+-N, exceeding the Class V standard set by the Environmental Quality Standards for Surface Water (China, GB3838-2002), while the luminescent bacteria test indicated low toxicity of nine sampling sites. Through 16S rRNA sequencing, a total of 45 phyla, 124 classes, and 963 genera were identified, in which Proteobacteria, Gammaproteobacteria, and Limnohabitans were the most abundant phylum, class, and genus, respectively. The Spearman correlation heatmap and redundancy analysis showed that the bacterial communities in the Qiujiang River were correlated with pH; the concentrations of K+, and NH4+-N, and the Limnohabitans were significantly correlated with the concentrations of K+, and NH4+-N in the Zhongyuan Road bridge segment. In addition, opportunistic pathogens Enterobacter cloacae complex and Klebsiella pneumoniae in the samples collected in the Zhongyuan Road bridge segment and Huangpu River segment, respectively, were successfully cultured. The Qiujiang River was a heavily polluted urban river. The bacterial community structure and diversity were greatly affected by the physiochemical factors of the Qiujiang River, and it displayed low toxicity while a relatively high infectious risk of intestinal and lung infectious diseases.


Subject(s)
Comamonadaceae , Communicable Diseases , Humans , Rivers/microbiology , RNA, Ribosomal, 16S/genetics , China
5.
Article in English | MEDLINE | ID: mdl-34462639

ABSTRACT

The scorpions, named Mesobuthus martensii, commonly called Quanxie () in Chinese, have been widely used as one of the animal medicines for more than 1,000 years because of the strong toxicity of their venoms. Meanwhile, scorpions are sexually dimorphic in appearance, and many exhibit traits associated with sex-biased gene expression, including maternal care, mating competition, female mating choices, ecology, and even venom composition and lethality. This study aims to explore the differences in composition of the venom of scorpions of different sex using the method of transcriptomics. Whole de novo transcriptomes were performed on the samples of M. martensii captured from Gansu Province to identify their sex-biased gene expression. The conserved CO-1 sequences of the captured samples matched that of M. martensii. A total of 8,444 (35.15%), 7,636 (31.78%), 8,510 (35.42%), 7,840 (32.63%), 9,980 (41.54%), and 11,829 (49.23%) unigenes were annotated with GO, KEGG, Pfam, Swissprot, eggNOG, and NR databases. Moreover, a total of 43 metalloproteases, 40 potassium channel toxins, 24 phospholipases, 12 defensins, 10 peroxiredoxins, 9 cysteine proteinase inhibitors, 7 serine protease inhibitors, 6 sodium channel toxins, 2 NDBPs, 1 calcium channel toxin, 1 waprin-like peptide, 1 antibacterial peptide, 1 antimicrobial peptide, and 1 anticoagulant peptide were screened out. With the fold change of 2 and 0.5, p value < 0.01, and q value < 0.05 as thresholds, a total of 41 out of 157 (26.11%) toxin-related unigenes had significant differential expression, and this ratio was much higher than the ratio of differentially expressed unigenes out of all annotated ones (8.84%). Of these differentially expressed toxins, 28 were upregulated and occupied the majority, up to 68.30%. The female scorpions showed more upregulated unigenes that annotated with toxins and had the potential to be used as more effective therapeutic drugs. In addition, this method of omics can be further used as a useful way to identify the difference between female and male toxic animals.

6.
J Toxicol Sci ; 46(6): 289-301, 2021.
Article in English | MEDLINE | ID: mdl-34078836

ABSTRACT

BACKGROUND: Harmine is a ß-carboline alkaloid that displays antidepressant, antitumor and other pharmacological effects. However, the strong toxic effects limit its clinical application, and should be first considered. PURPOSE: To evaluate the in vivo toxicity of harmine and explore intervention strategies against its toxicity. METHODS: The in vivo toxicity of harmine was assessed from the symptoms, biochemical indices, and cardiovascular effects in mice. The intervention experiments were performed by using anesthetics, central drugs, and peripheral anticholinergics. RESULTS: The acute toxicity of harmine is significantly dose-dependent and the median lethal dose is 26.9 mg/kg in vivo. The typical symptoms include convulsion, tremor, jumping, restlessness, ataxia, opisthotonos, and death; it also changes cardiovascular function. The anesthetics improved the survival rate and abolished the symptoms after harmine poisoning. Two central inhibitors, benzhexol and phenytoin sodium, uniformly improved the survival rates of mice poisoned with harmine. The peripheral anticholinergics didn't show any effects. CONCLUSION: Harmine exposure leads to central neurological symptoms, cardiovascular effects and even death through direct inhibition of the central AChE activity, where the death primarily comes from central neurological symptoms and is cooperated by the secondary cardiovascular collapse. Central inhibition prevents the acute toxicity of harmine, and especially rapid gaseous anesthetics such as isoflurane, might have potential application in the treatment of harmine poisoning.


Subject(s)
Anesthetics/therapeutic use , Cardiovascular Diseases/prevention & control , Central Nervous System Diseases/prevention & control , Harmine/toxicity , Isoflurane/therapeutic use , Phenytoin/therapeutic use , Trihexyphenidyl/therapeutic use , Acetylcholinesterase/metabolism , Anesthetics/pharmacology , Animals , Cardiovascular Diseases/chemically induced , Central Nervous System Diseases/chemically induced , Cholinergic Antagonists , Dose-Response Relationship, Drug , Harmine/poisoning , Isoflurane/pharmacology , Lethal Dose 50 , Male , Mice, Inbred ICR , Phenytoin/pharmacology , Trihexyphenidyl/pharmacology
7.
J Ethnopharmacol ; 265: 113268, 2021 Jan 30.
Article in English | MEDLINE | ID: mdl-32810618

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: As well-known medicinal materials in traditional Chinese medicine, scorpions, commonly called as Quanxie () in Chinese, have been widely used to treat several diseases such as rheumatoid arthritis, apoplexy, epilepsy and chronic pain for more than a thousand years. Not only in the ancient times, the scorpions have also been recorded nowadays in the Pharmacopoeia of the People's Republic of China since 1963. AIM OF STUDY: This study aims to explore the differences in composition of the venom of scorpions from different regions by using the method of transcriptomics and proteomics. MATERIALS AND METHODS: Whole de novo transcriptomes, proteomics and their bioinformatic analyses were performed on samples of the scorpion Mesobuthus martensii and their venoms from four different provinces with clear geographical boundaries, including Hebei, Henan, Shandong and Shanxi. RESULTS: The four captured samples had the same morphology, and the conserved CO-1 sequence matched that of M. martensii. A total of 141,003 of 174,653 transcripts were identified as unigenes, of which we successfully annotated 51,627 (36.61%), 21,970 (15.58%), 7,168 (5.08%), and 45,263 (32.10%) unigenes with the NR, GO, KEGG and SWISSPROT databases, respectively, while a total of 427 proteins were collected from the protein extracted from venoms. Both GO and KEGG annotations exhibited only slight differences among the four samples while the expression level of gene and protein was quite different. A total of 249 toxin-related unigenes were successfully screened, including 41 serine proteases and serine protease inhibitors, 39 potassium channel toxins, 38 phospholipases, 16 host defense peptides, 9 metalloproteases, and 50 other toxins. Although the toxin species were similar among the four samples, the gene expression of each toxin varied considerably, for example, the scorpion from HB province has the most abundant expression quality in sequences c48391_g1, c55239_g1 and c47749_g1 while the lowest expressions of c51178_g1, c62033_g3 and c63754_g2. CONCLUSION: The regional differences in the transcriptomes and proteomes of M. martensii are mainly from expression levels e.g. toxins rather than expression species, of which the method can be further extended to evaluate the qualities of traditional Chinese medicines obtained from different regions.


Subject(s)
Proteomics , Scorpion Venoms/toxicity , Scorpions , Transcriptome , Animals , China , Computational Biology , Gene Expression , Gene Expression Profiling , Proteome , Scorpion Venoms/chemistry , Scorpion Venoms/genetics
8.
Int J Biol Macromol ; 160: 1101-1113, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32473222

ABSTRACT

BACKGROUND: We successfully captured a kind of gelatinous organism DA-6 from Antarctic water, extracted its total RNAs and proteins, and performed species identification through a combination of transcriptomics and proteomics in this study. METHODS: The gelatinous organism DA-6 was captured 200 m underwater in Antarctica. Total RNA was extracted to construct the transcriptome and the proteins were identified by LC-MS/MS. RESULTS: DA-6 was identified as an Antarctic Salpa sp. through morphological examination and MT-CO1 phylogenetic analysis. A total of 47,183 unigenes were harvested through transcriptome. We also successfully annotated 11,954 (25.34%), 10,006 (22.21%), 4469 (9.47%) and 4901 (9.71%) unigenes with NR, SwissProt, GO and KEGG databases, respectively. In the proteomic analysis, a total of 4680 peptides and 1280 proteins were harvested using the transcriptome as the reference database. A number of both 549 (31.98%) proteins reannotated against the GO and KEGG databases. Moreover, a number of 5 toxic proteins matched from the 89 toxin-related unigenes were successfully screened, including 2 metalloproteinases, 1 serine protease, 1 serine protease inhibitor and 1 aflatoxin. CONCLUSION: Our study is the first to identify an Antarctic Salpa sp. according to the combination of de novo transcriptomics and proteomics, which can further be served as a public database for the identification of potential polar Salpa-derived lead compounds. In addition to morphology and CO1, the combined analysis of transcriptome and proteome can also be used as a value method for new species identify e.g. Salpa sp.


Subject(s)
Marine Toxins/genetics , Proteome/metabolism , Transcriptome , Urochordata/genetics , Animals , Marine Toxins/metabolism , Proteome/genetics , Urochordata/metabolism , Zooplankton/genetics , Zooplankton/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...