Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 39(5): 2174-2183, 2018 May 08.
Article in Chinese | MEDLINE | ID: mdl-29965517

ABSTRACT

To investigate the whole-reach nitrate (NO3--N) uptake dynamics in a headwater agricultural stream, we performed five pulse tracer additions of a reactive solute (as KNO3) and a conservative solute (as NaBr) in an agricultural drainage ditch in Hefei district, Chaohu Lake basin, from October 2016 to April 2017. The TASCC (tracer additions for spiraling curve characterization) approach and Michaelis-Menten (M-M) method were applied for the simulation of NO3--N uptake dynamics. Results showed that the ambient areal rate of total NO3--N uptake Uamb varied from 11.40 to 69.13 µg ·(m2 ·s)-1 with an average of 34.45 µg ·(m2 ·s)-1, and the ambient uptake velocity Vf-amb averaged 0.24 mm ·s-1 and varied from 0.07 to 0.43 mm ·s-1 across three well-mixed sub-reaches in the study. The ambient uptake length Sw-amb averaged 199.06 m with a range from 92.51 to 405.74 m, which was much smaller than the length of the drainage ditch (about 2.5 km), suggesting that the agricultural drainage ditch had a high potential for NO3--N retention. Generally, the M-M model fit the NO3--N uptake dynamics well, and the maximum uptake Umax ranged from 158 to 1280 µg ·(m2 ·s)-1 with a mean of 631.13 µg ·(m2 ·s)-1. The half saturation constant Km ranged from 0.16 to 5.52 mg ·L-1 with a mean of 1.46 mg ·L-1. According to correlation analysis, Sw-amb was negatively correlated with NO3--Namb, and Uambwas significantly positively correlated with NO3--Namb, while other nutrient spiraling metrics were not correlated with the NO3--N ambient concentration. Hydrological conditions had no distinct effect on the NO3--N retention, but both the width variability Фw and variability in cross-sectional area ФA were significantly correlated with most of the nutrient spiraling metrics, indicating that geomorphic features in the drainage ditch evidently impacted NO3--N uptake.

2.
Huan Jing Ke Xue ; 38(8): 3235-3242, 2017 Aug 08.
Article in Chinese | MEDLINE | ID: mdl-29964931

ABSTRACT

To reveal the impact of land use change on the phosphorus uptake in benthic sediments of suburban streams, a headwater stream in the urban fringe of Hefei City was selected and a set of benthic sediments was collected monthly from the chosen stream reach from June to November 2016. An incubation method was applied to explore the biotic and abiotic uptake of phosphorus in benthic sediments under intense human disturbance scenario. Results showed that the uptake potentials in summer were higher than those in autumn, both for total (including biotic and abiotic) and abiotic uptake of phosphorus. Furthermore, both of these uptakes were distinctly higher for the third sampling site, which is adjacent to the sewage outlet, than those for the other sites. For all six sampling sites, the contribution rate of biotic uptake of phosphorus was significantly greater than that of abiotic uptake, both in summer and autumn. The monthly variations in potentials and contribution rates of phosphorus uptake indicated that intense human disturbance via land use change had a great impact on the biotic uptake of phosphorus in benthic sediments of the suburban stream.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Phosphorus/metabolism , Rivers/chemistry , China , Cities , Humans , Seasons , Sewage
3.
Huan Jing Ke Xue ; 38(11): 4598-4606, 2017 Nov 08.
Article in Chinese | MEDLINE | ID: mdl-29965403

ABSTRACT

Water and benthic sediment samples were collected monthly from six sites over a 2-km reach in a first-order stream located in the northeastern rural-urban fringe of Hefei City, from May 2016 to January 2017. These sites were scattered in three stream reach types as natural pattern sections (Scenario 1), point source pollution sections (Scenario 2), and severe soil erosion sections (Scenario 3). The potential rates of nitrification and denitrification in the sediments were measured and variable characteristics were evaluated quarterly. Moreover, a difference analysis of each of the three scenarios and an influencing factor analysis for nitrification and denitrification potentials were subsequently conducted. Our results show that:① the mean value of the nitration ratios for total sediment samples is 0.381%, of which the maximum nitration ratio emerged in Scenario 2. As for Scenario 1, the nitration ratio in summer is the larger than in winter. The nitration ratios for Scenarios 2 and 3 rank from largest to smallest as spring > summer > autumn > winter. ② The mean value of the nitrification rate of the total sediment samples is 0.364 mg·(kg·d)-1, of which the maximum nitrification rate is associated with in Scenario 2. The nitrification rate is highest in winter, while similar for all other seasons in Scenarios 2 and 3. There is not much difference all year round for Scenario 1. ③ Average values for the denitrification ratio and denitrification rate for all sediment samples are 37.25% and 57.68 mg·(kg·d)-1, respectively. Both of these are higher for Scenario 2 than the other two scenarios for the same season. The ranking for denitrification for Scenarios 1 and 2 is summer > spring > autumn > winter, and spring > summer > autumn > winter in Scenario 3. ④ According to the difference analysis, significant differences not only exist between the nitrification rates between Scenarios 1 and 2 but also for the denitrification ratios and denitrification rates between Scenarios 1 and 3. In addition, there is an obvious difference in the nitration ratio between Scenarios 2 and 3. ⑤ Partial least-squares regressive analysis indicates that there is significant difference between the important influencing factors related to the nitration ratio and nitrification rate for each of the three scenarios.


Subject(s)
Denitrification , Geologic Sediments/chemistry , Nitrification , Rivers/chemistry , China , Cities , Soil
4.
Huan Jing Ke Xue ; 38(3): 936-945, 2017 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-29965563

ABSTRACT

From May 2015 to June 2016, seasonal sediment samples were collected from three headwater streams in the urban-rural fringe of Hefei, Chaohu Lake basin, China. The nitrogen pollution characteristics of sediments were preliminarily investigated for the three streams. Three metrics, that is, potential nitrification rate (PNR), areal nitrification rate (ANR) and rate of denitrification were quantitatively determined, and their spatial and temporal variations were discussed subsequently. Moreover, the relationship between PNR, ANR or denitrification rate and a list of environmental factors was discriminated by using partial least-squares regression analysis. Results showed that:① Guanzhenhe Distributary was the most polluted stream with a mean content of 4516.39 mg·kg-1 for TN, which was 2.56 and 1.36 times higher than those of Modian Stream and Taochong Stream, respectively. Similarly, the highest values for NH4+-N and NO3--N emerged in Guanzhenhe Distributary while the lowest existed in Modian Stream. ② There were distinct seasonal variations in PNR and ANR, namely, the maximum values emerged in summer, minimum in winter, and almost equivalent in spring and autumn. And the arrangement in order for PNR and ANR was Taochong Stream > Modian Stream > Guanzhenhe Distributary. ③ The mean rate of denitrification in Guanzhenhe Distributary was 10.59 mg·(kg·h)-1, which was 3.16 and 1.75 times higher than those in Modian Stream and Taochong Stream, respectively. In addition, both denitrification rate and denitrification activity in summer were higher than those in spring for the three streams. ④ According to the variable importance plot (FVIP), ANR, PNR and rate of denitrification were almost all significantly correlated with such physical and chemical factors as pH, OM, NH4+-N, NO3--N, TN and TP in sediments for the three streams.


Subject(s)
Denitrification , Geologic Sediments/microbiology , Nitrification , Rivers/microbiology , China , Cities , Nitrates , Nitrogen
5.
Huan Jing Ke Xue ; 37(2): 548-57, 2016 Feb 15.
Article in Chinese | MEDLINE | ID: mdl-27363143

ABSTRACT

A typical water system of agricultural headwater stream in Chaohu Lake basin was selected as the study area, and 17, 16, 14 and 13 surface sediments were collected from the four styles of stream, respectively, including ponds, branches, main channel and mainstream deep pools, in October 2014 (in autumn) and April 2015 (in spring). The forms and space-time variations of phosphorus in the sediments were analyzed. Clustering and variance analysis were conducted on the phosphorus forms data from the four styles of stream by means of multivariate statistical analyses. We quantified the phosphorus release risk (PSI) and identified the main impact factors of PSI via calculating the phosphorus sorption index (PSI) and the correlation analysis. The results showed that: (1) The contents of TP in the surface sediments ranged from 137.517 to 1709.229 mg x kg(-1) with an average value of 532. 245 mg x kg(-1), and the order of the average contents of phosphorus forms was IP (350.347 mg x kg(-1)) > OP (167.333 mg x kg(-1)) > Fe/Al-P ( 78. 869 mg x kg(-1)) > Ca-P (56.343 mg x kg(-1)) > Ex-P (6.609 mg x kg(-1)); (2) The contents of phosphorus forms had the same trend in all the four stream styles, which was deep pool > main channel > branch > pond; (3) In autumn, the deep pool and main channel were clustered into one class, while the pond and branch were clustered into the other class. In spring, branch, main channel and deep pool were clustered into the same class; (4) Variance analysis showed that the differences among the four stream styles were larger in autumn than in spring; (5) The PSI of the surface sediments ranged between 24.49 and 69.94 (mg x L(-1) x (100 g x micromol)(-1). The PSI in spring was lower than that in spring, indicating that phosphorus release risk of surface sediment was higher in spring than in autumn. (6) PSI had a significant negative correlation with Ex-P, IP and pH.


Subject(s)
Environmental Monitoring , Geologic Sediments/chemistry , Phosphorus/analysis , Water Pollutants, Chemical/analysis , Agriculture , China , Lakes , Ponds , Rivers , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...