Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 471: 115075, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815698

ABSTRACT

BACKGROUND: The periaqueductal gray (PAG) plays a well-established pivotal role in the descending pain modulatory circuit. The objective of this study was to investigate morphological changes in the astroglia in models that are commonly used in pain and itch studies. METHODS: Five different mouse models of pain, as well as two models of chronic itch, were established using complete Freund's adjuvant (CFA), spared nerve injury (SNI), bone cancer pain (BCP), cisplatin (CIS), and paclitaxel (PTX) for pain, and diphenylcyclopropenone (DCP) and acetone and diethyl ether followed by water (AEW) for chronic itch. von Frey tests and video recordings were employed to assess pain and itching behaviors. The immunofluorescence of S100ß, pSTAT3, and glial fibrillary acidic protein (GFAP) was examined. Two- and three-dimensional studies were used to evaluate changes in astrocyte morphology. RESULTS: Significant scratching was caused by DCP and AEW, whereas the administration of CFA, SNI, BCP, CIS, and PTX produced clear mechanical allodynia. The expression of GFAP in the lPAG/vlPAG was upregulated in CFA, SNI, BCP, CIS, PTX, and DCP mice but decreased in AEW mice. According to Sholl analysis, CFA, SNI, PTX, and BCP mice showed substantially higher astrocyte intersections in the vlPAG, whereas CFA, SNI, BCP, CIS, and DCP mice presented longer peak lengths. In three-dimensional analysis, CFA, SNI, PTX, and DCP mice showed increased astrocyte surface areas, while CIS and AEW mice showed both reduced surface areas and/or volumes of astrocytes. CONCLUSION: The findings showed that different pain and itching conditions have different astrocyte morphologies, and these variations in morphological changes help to explain the pathophysiology of these conditions.

2.
Anesth Analg ; 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38294950

ABSTRACT

BACKGROUND: Exercise has been proven to be an efficient intervention in attenuating neuropathic pain. However, the underlying mechanisms that drive exercise analgesia remain unknown. In this study, we aimed to examine the role of complement component 3 (C3) in neuropathic pain and whether antinociceptive effects are produced by exercise via regulating C3 in mice. METHODS: In this study, using a spared nerve injury (SNI)-induced neuropathic pain mice model, C57BL/6J mice were divided into 3 groups: Sham mice, SNI mice, and SNI + Exercise (Ex) mice with 30-minute low-intensity aerobic treadmill running (10 m/min, no inclination). Paw withdrawal threshold; thermal withdrawal latency; and glial fibrillary acidic protein, C3, tumor necrosis factor-α, and interlukin-1ß expression in the spinal cord were monitored. C3 knockout (KO) mice were further used to verify the role of C3 in neuropathic pain. RESULTS: von Frey test, acetone test, and CatWalk gait analysis revealed that treadmill exercise for 4 weeks reversed pain behaviors. In addition, exercise reduced astrocyte reactivity (SNI mean = 14.5, 95% confidence interval [CI], 12.7-16.3; SNI + Ex mean = 10.3, 95% CI, 8.77-11.9, P = .0003 SNI + Ex versus SNI) and inflammatory responses in the spinal cord after SNI. Moreover, it suppressed the SNI-induced upregulation of C3 expression in the spinal cord (SNI mean = 5.46, 95% CI, 3.39-7.53; SNI + Ex mean = 2.41, 95% CI, 1.42-3.41, P = .0054 SNI + Ex versus SNI in Western blot). C3 deficiency reduced SNI-induced pain and spinal astrocyte reactivity (wild type mean = 7.96, 95% CI, 6.80-9.13; C3 KO mean = 5.98, 95% CI, 5.14-6.82, P = .0052 C3 KO versus wild type). Intrathecal injection of recombinant C3 (rC3) was sufficient to produce mechanical (rC3-Ex mean = 0.77, 95% CI, 0.15-1.39; rC3 mean = 0.18, 95% CI, -0.04 to 0.41, P = .0168 rC3-Ex versus rC3) and cold (rC3-Ex mean = 1.08, 95% CI, 0.40-1.77; rC3 mean = 3.46, 95% CI, 1.45-5.47, P = .0025 rC3-Ex versus rC3) allodynia in mice. Importantly, exercise training relieved C3-induced mechanical and cold allodynia, and the analgesic effect of exercise was attenuated by a subeffective dose of intrathecal injection of C3. CONCLUSIONS: Overall, these results suggest that exercise suppresses neuropathic pain by regulating astroglial C3 expression and function, thereby providing a rationale for the analgesic effect of exercise as an acceptable alternative approach for treating neuropathic pain.

3.
Neuroscience ; 529: 16-22, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37574108

ABSTRACT

Interleukin-33 (IL-33) is an inflammatory factor with an extensive range of biological effects and pleiotropic roles in diseases. Evidence suggests that IL-33 and its receptor ST2 play a pivotal role in chronic pain and itch at the level of primary sensory neurons, the spinal cord, and the brain. In this review, we outline an evolving understanding of the roles and mechanisms of IL-33 in chronic pathological pain, including inflammatory, neuropathic, and cancer, and chronic pruritus, such as allergic contact dermatitis, atopic dermatitis, and dry skin. Understanding the key roles of IL-33/ST2 signaling may provide exciting insights into the mechanisms of chronic pain and itch and lead to new clues for therapeutic approaches to the resolution of chronic pain and itch.

SELECTION OF CITATIONS
SEARCH DETAIL
...