Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3235, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622157

ABSTRACT

Conformational arrangements within nanostructures play a crucial role in shaping the overall configuration and determining the properties, for example in covalent/metal organic frameworks. In on-surface synthesis, conformational diversity often leads to uncontrollable or disordered structures. Therefore, the exploration of controlling and directing the conformational arrangements is significant in achieving desired nanoarchitectures. Herein, a conformationally flexible precursor 2,4,6-tris(3-bromophenyl)-1,3,5-triazine is employed, and a random phase consisting of C3h and Cs conformers is firstly obtained after deposition of the precursor on Cu(111) at room temperature to 365 K. At low coverage (0.01 ML) selenium doping, we achieve the selectivity of the C3h conformer and improve the nanopore structural homogeneity. The ordered two-dimensional metal organic nanostructure can be fulfilled by selenium doping from room temperature to 365 K. The formation of the conformationally flexible precursor on Cu(111) is explored through the combination of high-resolution scanning tunneling microscopy and non-contact atomic force microscopy. The regulation of energy diagrams in the absence or presence of the Se atom is revealed by density functional theory calculations. These results can enrich the on-surface synthesis toolbox of conformationally flexible precursors, for the design of complex nanoarchitectures, and for future development of engineered nanomaterials.

2.
J Environ Manage ; 357: 120725, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38554454

ABSTRACT

Since the electroplating industry is springing up, effective control of phosphate has attracted global concerns. In this study, a novel biosorbent (MIL-88@CS-HDG) was synthesized by loading a kind of Fe-based metal organic framework called MIL-88 into chitosan hydrogel beads and applied in deep treatment of phosphate removal in electroplating wastewater. The adsorption capacities of H2PO4- on MIL-88@CS-HDG could reach 1.1 mmol/g (corresponding to 34.1 mg P/g and 106.7 mg H2PO4-/g), which was 2.65% higher than that on single MOF powders and chitosan hydrogel beads. The H2PO4- adsorption was well described by the Freundlich isotherm model. Over 90% H2PO4- could be adsorbed at contact time of 3 h. It could keep high adsorption capacity in the pH range from 2 to 7, which had a wider pH range of application compared with pure MIL-88. Only NO3- and SO42- limited the adsorption with the reduction rate of 11.42% and 23.23%, proving it tolerated most common co-existing ions. More than 92% of phosphorus could be recovered using NaOH and NaNO3. Electrostatic attraction between Fe core and phosphorus in MIL-88@CS-HDG and ion exchange played the dominant role. The recovered MIL-88@CS-HDG remained stable and applicable in the treatment process of real electroplating wastewater even after six adsorption-regeneration cycles. Based on the removal properties and superb regenerability, MIL-88@CS-HDG is potentially applicable to practical production.


Subject(s)
Chitosan , Water Pollutants, Chemical , Phosphates , Hydrogels , Chitosan/chemistry , Wastewater , Electroplating , Phosphorus , Adsorption , Water Pollutants, Chemical/chemistry , Hydrogen-Ion Concentration , Kinetics
3.
Neuropsychologia ; 191: 108721, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37918479

ABSTRACT

Impaired associative memory function in patients with schizophrenia has received considerable attention. However, previous studies have primarily concentrated on unisensory materials, which limits our understanding of the broader implications of this impairment. In this study, we sought to expand on this knowledge by examining two types of associative memory domains in individuals with schizophrenia, leveraging both visual (Vis) and auditory (Aud) materials. A total of 32 patients with schizophrenia and 29 healthy controls were recruited to participate in the study. Each participant participated in an experiment composed of three paradigms in which different abstract materials (Aud-Aud, Aud-Vis, and Vis-Vis) were presented. Subsequently, the discriminability scores of the two groups were calculated and compared in different modal tasks. Results from the study indicated that individuals with schizophrenia demonstrated varying degrees of associative memory dysfunction in both the same and cross-modalities, with the latter having a significantly lower score than healthy controls (t = 4.120, p < 0.001). Additionally, the cross-modal associative memory function was significantly and negatively correlated with the severity of negative symptoms among individuals diagnosed with schizophrenia (r = -0.362, p = 0.042). This study provides evidence of abnormalities in the processing and memorization of information that integrates multiple sensory modalities in individuals with schizophrenia. This is of great significance for further understanding the cognitive symptoms and pathological mechanisms of schizophrenia, potentially guiding the development of relevant interventions and treatment methods.


Subject(s)
Schizophrenia , Humans , Schizophrenia/complications , Schizophrenia/pathology , Memory Disorders/etiology , Memory Disorders/diagnosis
4.
Zool Res ; 44(3): 543-555, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37147908

ABSTRACT

Acute administration of MK-801 (dizocilpine), an N-methyl-D-aspartate receptor (NMDAR) antagonist, can establish animal models of psychiatric disorders. However, the roles of microglia and inflammation-related genes in these animal models of psychiatric disorders remain unknown. Here, we found rapid elimination of microglia in the prefrontal cortex (PFC) and hippocampus (HPC) of mice following administration of the dual colony-stimulating factor 1 receptor (CSF1R)/c-Kit kinase inhibitor PLX3397 (pexidartinib) in drinking water. Single administration of MK-801 induced hyperactivity in the open-field test (OFT). Importantly, PLX3397-induced depletion of microglia prevented the hyperactivity and schizophrenia-like behaviors induced by MK-801. However, neither repopulation of microglia nor inhibition of microglial activation by minocycline affected MK-801-induced hyperactivity. Importantly, microglial density in the PFC and HPC was significantly correlated with behavioral changes. In addition, common and distinct glutamate-, GABA-, and inflammation-related gene (116 genes) expression patterns were observed in the brains of PLX3397- and/or MK-801-treated mice. Moreover, 10 common inflammation-related genes ( CD68, CD163, CD206, TMEM119, CSF3R, CX3CR1, TREM2, CD11b, CSF1R, and F4/80) with very strong correlations were identified in the brain using hierarchical clustering analysis. Further correlation analysis demonstrated that the behavioral changes in the OFT were most significantly associated with the expression of inflammation-related genes ( NLRP3, CD163, CD206, F4/80, TMEM119, and TMEM176a), but not glutamate- or GABA-related genes in PLX3397- and MK-801-treated mice. Thus, our results suggest that microglial depletion via a CSF1R/c-Kit kinase inhibitor can ameliorate the hyperactivity induced by an NMDAR antagonist, which is associated with modulation of immune-related genes in the brain.


Subject(s)
Dizocilpine Maleate , Inflammation , Mice , Animals , Dizocilpine Maleate/pharmacology , Dizocilpine Maleate/metabolism , Microglia/metabolism , Brain/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/genetics , Inflammation/veterinary , gamma-Aminobutyric Acid/metabolism , Membrane Glycoproteins/metabolism , Receptors, Immunologic/metabolism
5.
Zool Res ; 43(6): 989-1004, 2022 Nov 18.
Article in English | MEDLINE | ID: mdl-36257830

ABSTRACT

Ketamine, a rapid-acting antidepressant drug, has been used to treat major depressive disorder and bipolar disorder (BD). Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in patients. Ketamine has also been applied to establish animal models of mania. At present, however, the underlying mechanism is still unclear. In the current study, we found that chronic lithium exposure attenuated ketamine-induced mania-like behavior and c-Fos expression in the medial prefrontal cortex (mPFC) of adult male mice. Transcriptome sequencing was performed to determine the effect of lithium administration on the transcriptome of the PFC in ketamine-treated mice, showing inactivation of the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) signaling pathway. Pharmacological inhibition of AKT signaling by MK2206 (40 mg/kg), a selective AKT inhibitor, reversed ketamine-induced mania. Furthermore, selective knockdown of AKT via AAV-AKT-shRNA-EGFP in the mPFC also reversed ketamine-induced mania-like behavior. Importantly, pharmacological activation of AKT signaling by SC79 (40 mg/kg), an AKT activator, contributed to mania in low-dose ketamine-treated mice. Inhibition of PI3K signaling by LY294002 (25 mg/kg), a specific PI3K inhibitor, reversed the mania-like behavior in ketamine-treated mice. However, pharmacological inhibition of mammalian target of rapamycin (mTOR) signaling with rapamycin (10 mg/kg), a specific mTOR inhibitor, had no effect on ketamine-induced mania-like behavior. These results suggest that chronic lithium treatment ameliorates ketamine-induced mania-like behavior via the PI3K-AKT signaling pathway, which may be a novel target for the development of BD treatment.


Subject(s)
Depressive Disorder, Major , Ketamine , Rodent Diseases , Male , Mice , Animals , Ketamine/toxicity , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Lithium/pharmacology , Mania , Phosphatidylinositol 3-Kinase/genetics , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinase/pharmacology , RNA, Small Interfering , TOR Serine-Threonine Kinases/genetics , Signal Transduction , Antidepressive Agents/therapeutic use , Antidepressive Agents/pharmacology , Sirolimus/pharmacology , Lithium Compounds/pharmacology , Mammals , Rodent Diseases/drug therapy
6.
Int Immunopharmacol ; 112: 109096, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36152536

ABSTRACT

Metabolic alteration of articular cartilage is associated with the pathogenesis of Osteoarthritis (OA). This study aims to identify the metabolism-related genes, corresponding transcription factors (TFs), and relevant pathways. Overall, RNA sequencing profiles of articular cartilage were collected from the GEO database. Metabolism-related genes and OA-related hallmarks were collected from the MSigDB v7.1. Differential expression analysis, Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and Gene Set Variation Analysis (GSVA) were conducted to identify pathways or hallmarks that were related to the pathogenesis of OA. The Pearson correlation analysis was used to establish the regulatory network among transcription factors, metabolism-related genes, and hallmarks. To further confirm the regulation of the identified transcription factors, Chromatin Immunoprecipitation-sequencing (ChIP-seq) was conducted, and single-cell sequencing was used to locate the cell clusters. Connectivity Map (CM) analysis were also conducted to identify the potential specific bioactive small molecules targeting the metabolic alteration of osteoarthritis. scTPA database was used to detect activated signaling pathways. Collectively, a total of 74 and 38 differentially expressed metabolism-related genes and TFs were retrieved. Skeletal system development, extracellular matrix, and cell adhesion molecule binding were important pathways in GO analysis. Human papillomavirus infection, PI3K-Akt signaling pathway, and Human T-cell leukemia virus 1 infection were the top 3 pathways in KEGG. 7 and 12 hallmarks were down- and up-regulated in GSVA, respectively. Ten bioactive small molecules may be potential treatments of OA by regulating the metabolism of articular cartilage. ChIP-seq analysis showed high relativity between transcription factors and their target genes. Furthermore, single-cell sequencing confirms the high expression of identified transcription factors in chondrocytes. To conclude, we established a comprehensive network integrated with transcription factors, metabolism-related genes, and hallmarks.


Subject(s)
Osteoarthritis , Transcription Factors , Humans , Transcription Factors/genetics , Gene Expression Profiling , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Osteoarthritis/metabolism , Cell Adhesion Molecules/genetics , Gene Regulatory Networks
7.
BMC Neurol ; 22(1): 125, 2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35365121

ABSTRACT

BACKGROUND: Previous studies have revealed that low frequency repeated transcranial magnetic stimulation (rTMS) on the contralesional primary motor cortex (cM1) is less effective in severe stroke patients with poor neural structural reserve than in patients with highly reserved descending motor pathway. This may be attributed to the fact that secondary motor cortex, especially contralesional dorsal premotor cortex (cPMd), might play an important compensatory role in the motor function recovery of severely affected upper extremity. The main purpose of this study is to compare the effectiveness of low frequency rTMS on cM1 and high frequency rTMS on cPMd in subcortical chronic stroke patients with severe hemiplegia. By longitudinal analysis of multimodal neuroimaging data, we hope to elucidate the possible mechanism of brain reorganization following different treatment regimens of rTMS therapy, and to determine the cut-off of stimulation strategy selection based on the degree of neural structural reserve. METHODS/DESIGN: The study will be a single-blinded randomized controlled trial involving a total of 60 subcortical chronic stroke patients with severe upper limb motor impairments. All patients will receive 3 weeks of conventional rehabilitation treatment, while they will be divided into three groups and receive different rTMS treatments: cM1 low frequency rTMS (n = 20), cPMd high frequency rTMS (n = 20), and sham stimulation group (n = 20). Clinical functional assessment, multimodal functional MRI (fMRI) scanning, and electrophysiological measurement will be performed before intervention, 3 weeks after intervention, and 4 weeks after the treatment, respectively. DISCUSSION: This will be the first study to compare the effects of low-frequency rTMS of cM1 and high-frequency rTMS of cPMd. The outcome of this study will provide a theoretical basis for clarifying the bimodal balance-recovery model of stroke, and provide a strategy for individualized rTMS treatment for stroke in future studies and clinical practice. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR1900027399. Registered on 12 Nov 2019, http://www.chictr.org.cn/showproj.aspx?proj=43686 .


Subject(s)
Motor Cortex , Stroke , Humans , Motor Cortex/diagnostic imaging , Neuroimaging , Randomized Controlled Trials as Topic , Stroke/complications , Stroke/diagnostic imaging , Stroke/therapy , Transcranial Magnetic Stimulation/methods , Treatment Outcome
8.
Int J Health Plann Manage ; 37(3): 1327-1339, 2022 May.
Article in English | MEDLINE | ID: mdl-34888948

ABSTRACT

OBJECTIVE: Satisfaction with healthcare may be captured by surveys of patients and staff, or in extreme cases, the number and severity of medical disputes. This study tries to investigate the relationship between satisfaction and hospital management as well as the role of good management in preventing medical disputes ex ante. METHOD: We investigate this relationship using information on management practices collected from 510 hospitals in mainland China using the World Management Survey questionnaire and combined with medical malpractice litigation data and patient/staff satisfaction surveys. Multiple regression models were used to analyse the relationship between hospital management scores and medical litigation outcomes as well as patient and staff satisfaction during 2014-2016. RESULTS: An increase of one standard deviation in the management score was related to 13.1% (p < 0.10) lower incidence of medical disputes, 12.4% (p < 0.05) fewer medical litigations, and 51.3% (p < 0.10) less compensation. Better management quality of hospitals was associated with higher inpatient satisfaction (p < 0.05) and staff well-being (p < 0.01). CONCLUSION: Improving hospital management could reduce hospital costs generated by lawsuits, reduce potential harm to patients, and improve patient and staff satisfaction, thus leading to a better patient-physician relationship.


Subject(s)
Dissent and Disputes , Malpractice , China , Hospitals , Humans , Patient Satisfaction , Physician-Patient Relations
9.
Brain Sci ; 13(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36672050

ABSTRACT

Approximately two-thirds of stroke survivors experience chronic upper-limb paresis; however, treatment options are limited. Repetitive transcranial magnetic stimulation (rTMS) can enhance motor function recovery in stroke survivors, but its efficacy is controversial. We compared the efficacy of stimulating different targets in 10 chronic stroke patients with severe upper-limb motor impairment. Motor imagery-based brain-computer interface training augmented with virtual reality was used to induce neural activity in the brain region during an imagery task. Participants were then randomly assigned to two groups: an experimental group (received high-frequency rTMS delivered to the brain region activated earlier) and a comparison group (received low-frequency rTMS delivered to the contralesional primary motor cortex). Behavioural metrics and diffusion tensor imaging were compared pre- and post rTMS. After the intervention, participants in both groups improved somewhat. This preliminary study indicates that in chronic stroke patients with severe upper-limb motor impairment, inducing activation in specific brain regions during motor imagery tasks and selecting these regions as a target is feasible. Further studies are needed to explore the efficacy of this intervention.

10.
Article in English | MEDLINE | ID: mdl-34777531

ABSTRACT

BACKGROUND: Recently, the brain-computer interface (BCI) has seen rapid development, which may promote the recovery of motor function in chronic stroke patients. METHODS: Twelve stroke patients with severe upper limb and hand motor impairment were enrolled and randomly assigned into two groups: motor imagery (MI)-based BCI training with multimodal feedback (BCI group, n = 7) and classical motor imagery training (control group, n = 5). Motor function and electrophysiology were evaluated before and after the intervention. The Fugl-Meyer assessment-upper extremity (FMA-UE) is the primary outcome measure. Secondary outcome measures include an increase in wrist active extension or surface electromyography (the amplitude and cocontraction of extensor carpi radialis during movement), the action research arm test (ARAT), the motor status scale (MSS), and Barthel index (BI). Time-frequency analysis and power spectral analysis were used to reflect the electroencephalogram (EEG) change before and after the intervention. RESULTS: Compared with the baseline, the FMA-UE score increased significantly in the BCI group (p = 0.006). MSS scores improved significantly in both groups, while ARAT did not improve significantly. In addition, before the intervention, all patients could not actively extend their wrists or just had muscle contractions. After the intervention, four patients regained the ability to extend their paretic wrists (two in each group). The amplitude and area under the curve of extensor carpi radialis improved to some extent, but there was no statistical significance between the groups. CONCLUSION: MI-based BCI combined with sensory and visual feedback might improve severe upper limb and hand impairment in chronic stroke patients, showing the potential for application in rehabilitation medicine.

11.
Neuropsychiatr Dis Treat ; 17: 471-480, 2021.
Article in English | MEDLINE | ID: mdl-33603383

ABSTRACT

BACKGROUND: Mice with a deletion at exon 19 of the circadian locomotor output cycles Kaput gene (Clock delta19) exhibit mania-like behavior and have been one of the most common animal models for bipolar disorder (BD). The predictive validity of the Clock delta19 was investigated via studies using lithium previously. Determination of effects of other mood stabilizers on Clock delta19 mouse would be helpful for better understanding of the mechanism underlined. METHODS: Wildtype (WT) and Clock delta19 mice were treated with saline (n = 10 for WT and n=10 for Clock delta19) or valproate (VPA) (n = 10 for WT and n=10 for Clock delta19) for 10 days. The hyperactivity, anxiety-like behaviors and depression-like behaviors were tested. The concentration of monoamine neurotransmitters and their metabolites in the hippocampus of saline or VPA treated WT and Clock delta19 mouse (n = 8 for each) were also determined. RESULTS: VPA can reverse hyperactivity, lower level of anxiety-like and depression-like behaviors of the Clock delta19 mouse. Clock delta19 mouse exhibited lower levels of serotonin (5-HT) and dopamine (DA) in right hippocampus compared to WT mouse. Chronic VPA treatment did not affect the levels of 5-HT and DA, but can reduce the level of levodopa (L-DOPA) in the right hippocampus of Clock delta19 mouse. CONCLUSION: Our results indicated that chronic VPA treatment can reverse the mania-like behaviors of the Clock delta19 mouse and further consolidate the validity of the Clock delta19 mouse as a model of BD. Monoamine neurotransmitters and their metabolites in the hippocampus are partly regulated by mutation of the Clock gene or VPA treatment.

12.
Pharmacol Biochem Behav ; 202: 173108, 2021 03.
Article in English | MEDLINE | ID: mdl-33450292

ABSTRACT

Ketamine, a dissociative anaesthetic, has been used in the treatment of major depressive disorder (MDD) as a rapid acting antidepressant drug. Recent studies have shown that ketamine may increase the potential risk of treatment-induced mania in MDD patients. Lithium is a well-known mood stabilizer and has been widely used for the treatment of mania. It is not fully understood which forebrain regions are involved in ketamine- and lithium-induced expression of c-Fos. Therefore, our aim was to investigate the effect of chronic lithium treatment on mania-like behavior and c-Fos expression in the mouse forebrain activated by a single administration of ketamine. In the open field test, our results showed that ketamine significantly increased the total distance and total cumulative duration of movement in mice, while chronic lithium could attenuate these effects of ketamine. In addition, acute ketamine induced higher c-Fos expression in the lateral septal nucleus, hypothalamus, amygdala, and hippocampus of mice in the treatment group compared to those in the control group. However, chronic lithium inhibited the significant increase in c-Fos-immunoreactive neurons following acute ketamine administration in the dentate gyrus of the hippocampus, field CA1 of the hippocampus, dorsal subiculum, ventral subiculum, ventral subiculum, central amygdaloid nucleus and basolateral amygdaloid nucleus. In summary, our research shows that pretreatment with lithium moderates the effects of acute ketamine administration on mania-like behavior and c-Fos expression in the forebrain. These findings could be helpful in better understanding the episodes of mania related to ketamine treatment for MDD and bipolar disorder.


Subject(s)
Antidepressive Agents/adverse effects , Antimanic Agents/administration & dosage , Behavior, Animal/drug effects , Hippocampus/metabolism , Ketamine/adverse effects , Lithium Compounds/administration & dosage , Mania/chemically induced , Mania/drug therapy , Proto-Oncogene Proteins c-fos/metabolism , Signal Transduction/drug effects , Amygdala/metabolism , Animals , Antidepressive Agents/administration & dosage , Bipolar Disorder/drug therapy , Depressive Disorder, Major/drug therapy , Disease Models, Animal , Hyperkinesis/chemically induced , Ketamine/administration & dosage , Male , Mania/metabolism , Mice , Mice, Inbred C57BL , Neurons/drug effects , Neurons/metabolism , Treatment Outcome
13.
Neurosci Lett ; 718: 134727, 2020 01 23.
Article in English | MEDLINE | ID: mdl-31887332

ABSTRACT

Motor recovery of wrist and fingers is still a great challenge for chronic stroke survivors. The present study aimed to verify the efficiency of motor imagery based brain-computer interface (BCI) control of continuous passive motion (CPM) in the recovery of wrist extension due to stroke. An observational study was conducted in 26 chronic stroke patients, aged 49.0 ± 15.4 years, with upper extremity motor impairment. All patients showed no wrist extension recovery. A 24-channel highresolution electroencephalogram (EEG) system was used to acquire cortical signal while they were imagining extension of the affected wrist. Then, 20 sessions of BCI-driven CPM training were carried out for 6 weeks. Primary outcome was the increase of active range of motion (ROM) of the affected wrist from the baseline to final evaluation. Improvement of modified Barthel Index, EEG classification and motor imagery pattern of wrist extension were recorded as secondary outcomes. Twenty-one patients finally passed the EEG screening and completed all the BCI-driven CPM trainings. From baseline to the final evaluation, the increase of active ROM of the affected wrists was (24.05 ± 14.46)˚. The increase of modified Barthel Index was 3.10 ± 4.02 points. But no statistical difference was detected between the baseline and final evaluations (P > 0.05). Both EEG classification and motor imagery pattern improved. The present study demonstrated beneficial outcomes of MI-based BCI control of CPM training in motor recovery of wrist extension using motor imagery signal of brain in chronic stroke patients.


Subject(s)
Brain/physiology , Imagery, Psychotherapy , Stroke Rehabilitation , Stroke/complications , Wrist Joint , Adult , Aged , Brain-Computer Interfaces , Electroencephalography , Female , Humans , Male , Middle Aged , Range of Motion, Articular , Recovery of Function , Wrist
14.
Neurosci Lett ; 715: 134658, 2020 01 10.
Article in English | MEDLINE | ID: mdl-31794792

ABSTRACT

Recently, cerebrospinal fluid (CSF) YKL-40 levels were reported to be a promising candidate biomarker of glial inflammation in Alzheimer's disease (AD). To detect how APOE ε4 affects CSF YKL-40 levels in cognitively normal (CN) states, mild cognitive impairment (MCI) and AD dementia, data from 35 CN subjects, 63 patients with MCI, and 11 patients with AD from a cross-sectional study in the Alzheimer's Disease Neuroimaging Initiative (ADNI) database were investigated. The results showed that CSF YKL-40 concentrations were increased in the AD dementia group than in the CN group. CSF YKL-40 levels were higher in APOE ε4 carriers than in noncarriers with MCI. No statistically significant difference was found in CSF YKL-40 levels between APOE ε4 carrier and noncarriers in AD and CN subjects. CSF YKL-40 concentrations were tightly related to CSF tau and p-tau concentrations in the MCI group. Analysis implied that APOE ε4 might affect CSF YKL-40 levels in MCI subjects, suggesting a crucial role of APOE ε4 in neuroinflammation in detecting individuals who might convert to AD from MCI and, thus, as an effective predictive factor.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Chitinase-3-Like Protein 1/cerebrospinal fluid , Prodromal Symptoms , tau Proteins/cerebrospinal fluid , Aged , Apolipoprotein E4/genetics , Biomarkers/cerebrospinal fluid , Cognitive Dysfunction , Female , Heterozygote , Humans , Male , Neuropsychological Tests
15.
DNA Cell Biol ; 38(9): 996-1004, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31393166

ABSTRACT

Osteosarcoma (OS), a highly aggressive bone tumor, mainly occurs in young patients and always presents abnormalities in molecular biology, such as microRNAs (miRNAs). However, the characteristic and underlying mechanism of miR-671-5p in OS are still unclear. In this study, we certify that miR-671-5p is remarkably downregulated in OS tissues and cells. Overexpressed miR-671-5p can suppress OS cell proliferation in vivo and in vitro, by the way of arresting cell-cycle progression. The overexpression of cyclin D1 (CCND1) and CDC34 promotes cell proliferation and cell-cycle promotion, whose functions are contrary to miR-671-5p. miR-671-5p directly binds to CCND1 and CDC34, which are thought as the key factors in regulating cell cycle. Taken together, our results suggest that by targeting CCND1 and CDC34, miR-671-5p plays a tumor suppressor in OS to inhibit the development of OS, implicating it as a novel target for therapeutic intervention in OS.


Subject(s)
Cell Cycle , Cell Proliferation , MicroRNAs/genetics , Osteosarcoma/genetics , Animals , Cell Line, Tumor , Cyclin D1/genetics , Cyclin D1/metabolism , Down-Regulation , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Nude , MicroRNAs/metabolism , Osteosarcoma/pathology , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...