Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Regen Biomater ; 11: rbae036, 2024.
Article in English | MEDLINE | ID: mdl-38628547

ABSTRACT

Immune checkpoint blockade therapy provides a new strategy for tumor treatment; however, the insufficient infiltration of cytotoxic T cells and immunosuppression in tumor microenvironment lead to unsatisfied effects. Herein, we reported a lipid/PLGA nanocomplex (RDCM) co-loaded with the photosensitizer Ce6 and the indoleamine 2,3-dioxygenase (IDO) inhibitor 1MT to improve immunotherapy of colon cancer. Arginine-glycine-aspartic acid (RGD) as the targeting moiety was conjugated on 1,2-distearoyl-snglycero-3-phosphoethanolamine lipid via polyethylene glycol (PEG), and programmed cell death-ligand 1 (PD-L1) peptide inhibitor DPPA (sequence: CPLGVRGK-GGG-d(NYSKPTDRQYHF)) was immobilized on the terminal group of PEG via matrix metalloproteinase 2 sensitive peptide linker. The Ce6 and 1MT were encapsulated in PLGA nanoparticles. The drug loaded nanoparticles were composited with RGD and DPPA modified lipid and lecithin to form lipid/PLGA nanocomplexes. When the nanocomplexes were delivered to tumor, DPPA was released by the cleavage of a matrix metalloproteinase 2-sensitive peptide linker for PD-L1 binding. RGD facilitated the cellular internalization of nanocomplexes via avß3 integrin. Strong immunogenic cell death was induced by 1O2 generated from Ce6 irradiation under 660 nm laser. 1MT inhibited the activity of IDO and reduced the inhibition of cytotoxic T cells caused by kynurenine accumulation in the tumor microenvironment. The RDCM facilitated the maturation of dendritic cells, inhibited the activity of IDO, and markedly recruited the proportion of tumor-infiltrating cytotoxic T cells in CT26 tumor-bearing mice, triggering a robust immunological memory effect, thus effectively preventing tumor metastasis. The results indicated that the RDCM with dual IDO and PD-L1 inhibition effects is a promising platform for targeted photoimmunotherapy of colon cancer.

2.
Int J Mol Sci ; 25(4)2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38396637

ABSTRACT

A citric acid cross-linked ß-cyclodextrin (ß-CD) polymer was synthesized and loaded on micro-ceramic balls to fabricate the solid-phase adsorbents (P-MCB) for adsorption and extraction of triazole pesticides from water. The stability of ß-CD polymer and P-MCB was investigated in solutions with different pH values at different temperatures. The adsorption properties and the influence of kinetics, sorbent amount, pesticide concentration, and temperature on the adsorption capacity were evaluated. The results showed P-MCB had favorable adsorption of 15.98 mg/g flutriafol in 3.5 h. The equilibrium data followed the Freundlich equation, and the adsorption of flutriafol and diniconazole followed the second-order kinetics. The recovery rate of P-MCB for triazole pesticides in water was satisfactory, and the recovery rate was still 80.1%, even at the 10th cycle. The P-MCB had good stability, with a degradation rate of 0.2% ± 0.08 within 10 days, which could ensure extraction and recycling.


Subject(s)
Cellulose , Cyclodextrins , Pesticides , Water Pollutants, Chemical , Pesticides/chemistry , Water/chemistry , Polymers/chemistry , Solid Phase Extraction , Triazoles , Adsorption , Water Pollutants, Chemical/chemistry
3.
Nanoscale ; 16(6): 2860-2867, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38231414

ABSTRACT

Identifying the underlying catalytic mechanisms of synthetic nanocatalysts or nanozymes is important in directing their design and applications. Herein, we revisited the oxidation process of 4,4'-diamino-3,3',5,5'-tetramethylbiphenyl (TMB) by Mn3O4 nanoparticles and revealed that it adopted an organic acid/aldehyde-triggered catalytic mechanism at a weakly acidic or neutral pH, which is O2-independent and inhibited by the pre-addition of H2O2. Importantly, similar organic acid/aldehyde-mediated oxidation was applied to other substrates of peroxidase in the presence of nanoparticulate or commercially available MnO2 and Mn2O3 but not MnO. The selective oxidation of TMB by Mn3O4 over MnO was further supported by density functional theory calculations. Moreover, Mn3O4 nanoparticles enabled the oxidation of indole 3-acetic acid, a substrate that can generate cytotoxic singlet oxygen upon single-electron transfer oxidation, displaying potential in nanocatalytic tumor therapy. Overall, we revealed a general catalytic mechanism of manganese oxides towards the oxidation of peroxidase substrates, which could boost the design and various applications of these manganese-based nanoparticles.


Subject(s)
Nanoparticles , Neoplasms , Humans , Oxides , Manganese Compounds/pharmacology , Oxidoreductases , Manganese , Aldehydes , Electrons , Hydrogen Peroxide , Neoplasms/drug therapy , Peroxidases
4.
ACS Nano ; 18(1): 229-244, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38112525

ABSTRACT

Colonic epithelial damage and dysregulated immune response are crucial factors in the progression and exacerbation of inflammatory bowel disease (IBD). Nanoenabled targeted drug delivery to the inflamed intestinal mucosa has shown promise in inducing and maintaining colitis remission, while minimizing side effects. Inspired by the excellent antioxidative and anti-inflammatory efficacy of naturally derived magnolol (Mag) and gut homeostasis regulation of microbiota-derived butyrate, we developed a pH/redox dual-responsive butyrate-rich polymer nanoparticle (PSBA) as an oral Mag delivery system for combinational therapy of IBD. PSBA showed a high butyrate content of 22% and effectively encapsulated Mag. The Mag-loaded nanoparticles (PSBA@Mag) demonstrated colonic pH and reduction-responsive drug release, ensuring efficient retention and adhesion in the colon of colitis mice. PSBA@Mag not only normalized the level of reactive oxygen species and inflammatory effectors in inflamed colonic mucosa but also restored the epithelial barrier function in both ulcerative colitis and Crohn's disease mouse models. Importantly, PSBA promoted the migration and healing ability of intestinal epithelial cells in vitro and in vivo, sensitizing the therapeutic efficacy of Mag in animal models. Moreover, transcriptomics and metabolism analyses revealed that PSBA@Mag mitigated inflammation by suppressing the production of pro-inflammatory cytokines and chemokines and restoring the lipid metabolism. Additionally, this nanomedicine modulated the gut microbiota by inhibiting pathogenic Proteus and Escherichia-Shigella and promoting the proliferation of beneficial probiotics, including Lachnoclostridium, Lachnospiraceae_NK4A136_group and norank_f_Ruminococcaceae. Overall, our findings highlight the potential of butyrate-functionalized polymethacrylates as versatile and effective nanoplatforms for colonic drug delivery and mucosa repair in combating IBD and other gastrointestinal disorders.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Animals , Mice , Polymers/pharmacology , Butyrates/metabolism , Butyrates/pharmacology , Inflammatory Bowel Diseases/drug therapy , Intestinal Mucosa , Colon/metabolism , Colitis/metabolism , Disease Models, Animal
5.
J Mol Neurosci ; 73(11-12): 921-931, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37864623

ABSTRACT

We aimed to investigate the mechanism underlying the roles of miRNA-377, Cystathionine-ß-synthase (CBS), and hydrogen sulfide (H2S) in the development of hypoxic-ischemic encephalopathy (HIE). We investigated the relationship between CBS, H2S, and miR-377 in both humans with HIE and animals with hypoxic-ischemic insult. An animal model of fetal rats with hypoxic-ischemic brain injury was established, and the fetal rats were randomly assigned to control and hypoxic-ischemic groups for 15 min (mild) and 30 min (moderate) groups. Human samples were collected from children diagnosed with HIE. Healthy or non-neurological disease children were selected as the control group. Hematoxylin-eosin (HE) staining, quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot were used to conduct this study. Hypoxia-ischemia induced pathological alterations in brain tissue changes were more severe in groups with severe hypoxic insult. miRNA-377 expression levels were upregulated in brain tissue and serum of fetal rats and human samples with HIE compared to controls. Conversely, CBS and H2S expression levels were significantly decreased in both human and animal samples compared to controls. Our findings suggest that CBS is a target gene of miR-377 which may contribute to the development of HIE by regulating CBS/H2S. H2S has a protective effect against hypoxic damage in brain tissue. The study provides new insights into the potential mechanisms underlying the protective role of H2S in hypoxic brain damage and may contribute to the development of novel therapies for HIE.


Subject(s)
Hydrogen Sulfide , Hypoxia-Ischemia, Brain , MicroRNAs , Child , Humans , Rats , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Hypoxia-Ischemia, Brain/genetics , Cystathionine , Cystathionine beta-Synthase/genetics , Cystathionine beta-Synthase/metabolism , Rats, Sprague-Dawley , Hydrogen Sulfide/metabolism
6.
J Control Release ; 362: 548-564, 2023 10.
Article in English | MEDLINE | ID: mdl-37683732

ABSTRACT

Colorectal cancer (CRC), one of the most common and deadliest diseases worldwide, poses a great health threat and social burden. The clinical treatments of CRC encompassing surgery, chemotherapy, and radiotherapy are challenged with toxicity, therapy resistance, and recurrence. In the past two decades, targeted therapy and immunotherapy have greatly improved the therapeutic benefits of CRC patients but they still suffer from drug resistance and low response rates. Very recently, gut microbiota regulation has exhibited a great potential in preventing and treating CRC, as well as in modulating the efficacy and toxicity of chemotherapy and immunotherapy. In this review, we provide a cutting-edge summary of nanomedicine-based treatment in colorectal cancer, highlighting the recent progress of oral and systemic tumor-targeting and/or tumor-activatable drug delivery systems as well as novel therapeutic strategies against CRC, including nano-sensitizing immunotherapy, anti-inflammation, gut microbiota modulation therapy, etc. Finally, the recent endeavors to address therapy resistance, metastasis, and recurrence in CRC were discussed. We hope this review could offer insight into the design and development of nanomedicines for CRC and beyond.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Immunotherapy , Drug Delivery Systems
7.
J Funct Biomater ; 14(6)2023 May 24.
Article in English | MEDLINE | ID: mdl-37367256

ABSTRACT

A novel sericin-dextran conjugate (SDC) and self-assembled microparticles has been prepared for improving solubility of atazanavir. Microparticles of SDC were assembled by the reprecipitation method. The size and morphology of SDC microparticles could be adjusted by the concentration and solvents. Low concentration was conducive to the preparation of microspheres. Heterogeneous microspheres could be prepared in ethanol with the range of 85-390 nm, and hollow mesoporous microspheres in propanol with an average particle size of 2.5-22 µm. The aqueous solubility of atazanavir was improved to 2.22 mg/mL in buffer solutions at pH 2.0 and 1.65 mg/mL at pH 7.4 by SDC microspheres. In vitro release of atazanavir from hollow microspheres of SDC exhibited a slower release, had the lowest linear cumulative release in basic buffer (pH 8.0), and the most rapid double exponential diphase kinetic cumulative release in acid buffer (pH 2.0).

8.
Chem Asian J ; 18(10): e202300213, 2023 May 16.
Article in English | MEDLINE | ID: mdl-36988023

ABSTRACT

A novel 7a,8,10,11-tetrahydro-9H-pyrido[2',1':2,3][1,3]-oxazino[6,5,4-ij]isoquinoline derivative (POIQ) is accidentally obtained from an isoquinoline derivative and iodine in dimethyl sulfoxide, which is demonstrated to undergo a mechanism of demethylation and thus intramolecular nucleophilic substitution. POIQ with twisted molecular conformation and loose stacking arrangement shows multifunctional optical properties including dual-state emission, mechanochromic, and solid-state acidochromic activities. Furthermore, an organic room temperature phosphorescence (RTP) doped system with green afterglow of 2 s is constructed using POIQ as the guest and easily available phenyl benzoate as the host, in which the host molecules assist in the transfer of the triplet excitons of the guest molecules. Rewritable optical recording media and information encryption are also realized based on multifunctional optical properties of this compound. This work provides inspiration for the development of N,O-containing fused-ring compounds with fluorescence/RTP properties.

9.
Biomater Sci ; 11(4): 1182-1214, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36606593

ABSTRACT

Reactive oxygen species (ROS) play a crucial role in physiological and pathological processes, emerging as a therapeutic target in cancer. Owing to the high concentration of ROS in solid tumor tissues, ROS-based treatments, such as photodynamic therapy and chemodynamic therapy, and ROS-responsive drug delivery systems have been widely explored to powerfully and specifically suppress tumors. However, their anticancer efficacy is still hampered by the heterogeneous ROS levels, and thus comprehensively upregulating the ROS levels in tumor tissues can ensure an enhanced therapeutic effect, which can further sensitize and/or synergize with other therapies to inhibit tumor growth and metastasis. Herein, we review the recently emerging drug delivery strategies and technologies for increasing the H2O2, ˙OH, 1O2, and ˙O2- concentrations in cancer cells, including the efficient delivery of natural enzymes, nanozymes, small molecular biological molecules, and nanoscale Fenton-reagents and semiconductors and neutralization of intracellular antioxidant substances and localized input of mechanical and electromagnetic waves (such as ultrasound, near infrared light, microwaves, and X-rays). The applications of these ROS-upregulating nanosystems in enhancing and synergizing cancer therapies including chemotherapy, chemodynamic therapy, phototherapy, and immunotherapy are surveyed. In addition, we discuss the challenges of ROS-upregulating systems and the prospects for future studies.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Reactive Oxygen Species , Hydrogen Peroxide , Nanomedicine , Neoplasms/drug therapy , Neoplasms/pathology , Cell Line, Tumor
10.
Mol Pharm ; 20(2): 829-852, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36588471

ABSTRACT

Epidermal growth factor receptor (EGFR) plays a key role in signal transduction pathways associated with cell proliferation, growth, and survival. Its overexpression and aberrant activation in malignancy correlate with poor prognosis and short survival. Targeting inhibition of EGFR by small-molecular tyrosine kinase inhibitors (TKIs) is emerging as an important treatment model besides of chemotherapy, greatly reshaping the landscape of cancer therapy. However, they are still challenged by the off-targeted toxicity, relatively limited cancer types, and drug resistance after long-term therapy. In this review, we summarize the recent progress of oral, pulmonary, and injectable drug delivery systems for enhanced and targeting TKI delivery to tumors and reduced side effects. Importantly, EGFR-TKI-based combination therapies not only greatly broaden the applicable cancer types of EGFR-TKI but also significantly improve the anticancer effect. The mechanisms of TKI resistance are summarized, and current strategies to overcome TKI resistance as well as the application of TKI in reversing chemotherapy resistance are discussed. Finally, we provide a perspective on the future research of EGFR-TKI-based cancer therapy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Drug Resistance, Neoplasm , ErbB Receptors , Mutation
11.
Biosci Rep ; 43(1)2023 01 31.
Article in English | MEDLINE | ID: mdl-36541246

ABSTRACT

Hypoxic-ischemic brain injury contributes to major neurodevelopmental disorders and is one of the leading causes of seizures, which substantially results in neurodevelopmental impairments with long-lasting outcomes and is one of the main causes of death in neonates. We aimed to investigate the correlation between miRNA-210 and SCN1B, a voltage-gated sodium channel gene, in brain tissue of fetal rats with hypoxic-ischemic brain injury. We found that after 10 min of hypoxia-ischemia, all reperfusion groups showed different degrees of damage. The degree of the injury increased in all the groups after 30 min of hypoxia-ischemia. Those changes include changes in the pericellular lumen, capillaries in the cortex, erythrocytes, enlarged pericellular lumen, the enlarged pericapillary lumen in the cortex, edema around glial cells, enlarged gap to form multiple necrotic foci, deformation of neurons, and loss of cell structure. The expression levels of HIF-1α, miRNA-210, and HIF-1α mRNA were higher in the hypoxic-ischemic groups than that in the control groups, among which the expression levels in the severe group were higher than that in mild group. SCN1B is down-regulated in both the mild and severe groups, and the lowest level was found at 30 min after hypoxia in both groups. MiRNA-210 plays a role in the development of hypoxic-ischemic encephalopathy (HIE) by regulating the expression changes of SCN1B. The brain tissue of fetal rats in the hypoxic-ischemic animal model showed pathological changes of brain injury.


Subject(s)
Brain Injuries , Hypoxia-Ischemia, Brain , MicroRNAs , Animals , Rats , Hypoxia-Ischemia, Brain/genetics , Brain/pathology , Neurons/metabolism , Brain Injuries/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism
12.
J Control Release ; 354: 1-18, 2023 02.
Article in English | MEDLINE | ID: mdl-36566845

ABSTRACT

The inflammatory bowel disease (IBD) is incurable, chronic, recrudescent disorders in the inflamed intestines. Current clinic treatments are challenged by systemic exposure-induced severe side effects, inefficiency after long-term treatment, and increased risks of infection and malignancy due to immunosuppression. Fortunately, naturally bioactive small molecules, reactive oxygen species scavengers (or antioxidants), and gut microbiota modulators have emerged as promising candidates for the IBD treatment. Polymeric systems have been engineered as a delivery vehicle to improve the bioavailability and efficacy of these therapeutic agents through targeting the mucosa and enhancing intestinal adhesion and retention, and reduce their systemic toxicity. Herein we survey polymer-derived drug delivery systems for combating the IBD. Advanced delivery technologies, therapeutic intervention strategies, and the principles for the construction of hierarchical, mucosa-targeting, and bioresponsive systems are elaborated, providing insights into design and development of from-bench-to-bedside drug delivery polymeric systems for the IBD treatment.


Subject(s)
Inflammatory Bowel Diseases , Polymers , Humans , Polymers/therapeutic use , Intestinal Mucosa , Inflammatory Bowel Diseases/drug therapy , Intestines , Drug Delivery Systems
13.
Acta Biomater ; 152: 495-506, 2022 10 15.
Article in English | MEDLINE | ID: mdl-36087871

ABSTRACT

Despite the extensive explorations of nanoscale metal-organic frameworks (nanoMOFs) in drug delivery, the intrinsic bioactivity of nanoMOFs, such as anticancer activity, is severely underestimated owing to the overlooked integration of the hierarchical components including nanosized MOFs and molecular-level organic ligands and metal-organic complexes. Herein, we propose a de novo design of multifunctional bioactive nanoMOFs ranging from molecular to nanoscale level, and demonstrate this proof-of-concept by a copper-olsalazine (Olsa, a clinically approved drug for inflammatory bowel disease, here as a bioactive linker and DNA hypomethylating agent) nanoMOF displaying a multifaceted anticancer mechanism: (1) Cu-Olsa nanoMOF-mediated redox dyshomeostasis for enhanced catalytic tumor therapy, (2) targeting downregulation of cyclooxygenase-2 by the organic complex of Cu2+ and Olsa, and (3) Olsa-mediated epigenetic regulation. Cu-Olsa nanoMOF displayed an enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors, improved the expression of tumor suppressors TIMP3 and AXIN2 by epigenetic modulation, and fulfilled selective inhibition of colorectal cancer cells over normal cells. The hyaluronic acid-modified nanoMOF further verified the efficient suppression of CT26 colorectal tumor growth and metastasis in murine models. Overall, these results suggest that Olsa-based MOF presents a platform of epigenetic therapy-synergized nanomedicine for efficient cancer treatment and provides a powerful strategy for the design of intrinsically bioactive nanoMOFs. STATEMENT OF SIGNIFICANCE: Metal-organic frameworks (MOFs) with intrinsic bioactivities such as anticancer and antibacterial activity are of great interest. Herein, we reported a bioactive copper-olsalazine (Cu-Olsa) nanoMOF as a nanodrug for colorectal cancer treatment. This nanoMOF per se displayed enzyme-like catalytic activity to generate cancericidal species ·OH and 1O2 from rich H2O2 in tumors for nanocatalytic tumor therapy. Upon dissociation into small molecular copper-organic complex and olsalazine in cancer cells, COX-2 inhibition and epigenetic modulation were fulfilled for selective inhibition of colorectal cancer growth and metastasis.


Subject(s)
Colorectal Neoplasms , Metal-Organic Frameworks , Nanoparticles , Aminosalicylic Acids , Animals , Anti-Bacterial Agents , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Copper/pharmacology , Cyclooxygenase 2 , Epigenesis, Genetic , Hyaluronic Acid , Hydrogen Peroxide/pharmacology , Ligands , Metal-Organic Frameworks/pharmacology , Mice
14.
Mol Pharm ; 19(9): 3439-3449, 2022 09 05.
Article in English | MEDLINE | ID: mdl-35994700

ABSTRACT

The combined delivery of chemotherapeutics with checkpoint inhibitors of the PD-1/PD-L1 pathway provides a new approach for cancer treatment. Small-molecule peptide inhibitors possess short production cycle, low immunogenicity, and fewer side effects; however, their potential in cancer therapy is hampered by the rapid biodegradation and a nanocarrier is needed for efficient drug delivery. Herein, anticancer drug doxorubicin (DOX) and PD-L1 inhibitor peptide P-12 are co-loaded by a lipid polymer nanocomplex based on poly(lactic-co-glycolic acid) (PLGA) and DSPE-PEG. Octaarginine (R8)-conjugated DSPE-PEG renders the LPN efficient internalization by cancer cells. The optimal nanomedicine LPN-30-R82K@DP shows a diameter of 125 nm and a DOX and P-12 loading content of 5.0 and 6.2%, respectively. LPN-30-R82K@DP exhibits good physiological stability and enhanced cellular uptake by cancer cells. It successfully induces immunogenic cell death and PD-L1 blockade in CT26 cancer cells. The in vivo antitumor study further suggests that co-loaded nanomedicine efficiently suppresses CT26 tumor growth and elicits antitumor immune response. This study manifests that lipid polymer nanocomplexes are promising drug carriers for the efficient chemo-immunotherapy of cancer.


Subject(s)
Nanoparticles , Neoplasms , Cell Line, Tumor , Doxorubicin/chemistry , Immunotherapy , Lipids/chemistry , Nanoparticles/chemistry , Neoplasms/drug therapy , Polymers/chemistry
15.
Acta Biomater ; 151: 480-490, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35926781

ABSTRACT

Reactive oxygen species (ROS) are important signal molecules and imbalanced ROS level could lead to cell death. Elevated ROS levels in tumor tissues offer an opportunity to design ROS-responsive drug delivery systems (DDSs) or ROS-based cancer therapies such as chemodynamic therapy. However, their anticancer efficacies are hampered by the ROS-consuming nature of these DDSs as well as the high concentration of reductive agents like glutathione (GSH). Here we developed a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde (CA)-based ROS-replenishing organic ligand (TCA). TCA can ROS-responsively release CA to supplement intracellular ROS and deplete GSH by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitated efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo studies revealed that ROS-replenishing PCFD exhibited much better anticancer effect than ROS-consuming control nanoparticle PAFD. The ingenious ROS-replenishing strategy could be expanded to construct versatile ROS-responsive DDSs and ROS-based nanomedicines with potentiated anticancer activity. STATEMENT OF SIGNIFICANCE: We develop a doxorubicin (DOX)-incorporated iron coordination polymer nanoparticle (PCFD) for efficient chemo-chemodynamic cancer therapy by using a cinnamaldehyde-based reactive oxygen species (ROS)-replenishing organic ligand. This functional ligand can ROS-responsively release cinnamaldehyde to supplement intracellular H2O2 and deplete glutathione (GSH) by a thiol-Michael addition reaction, which together with DOX-triggered ROS upregulation and Fe3+-enabled GSH depletion facilitates efficient DOX release and enhanced Fenton reaction, thereby inducing redox dyshomeostasis and cancer cell death in a concurrent apoptosis-ferroptosis way. Both in vitro and in vivo studies reveal that ROS-replenishing PCFD exhibit much better anticancer effect than ROS consuming counterpart. This study provides a facile and straightforward strategy to design ROS amplifying nanoplatforms for cancer treatment.


Subject(s)
Ferroptosis , Nanoparticles , Acrolein/analogs & derivatives , Apoptosis , Cell Line, Tumor , Doxorubicin/pharmacology , Doxorubicin/therapeutic use , Glutathione/pharmacology , Homeostasis , Hydrogen Peroxide/pharmacology , Iron/pharmacology , Ligands , Nanomedicine , Oxidation-Reduction , Polymers/pharmacology , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/pharmacology
16.
Biomaterials ; 287: 121687, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35872555

ABSTRACT

Reactive oxygen species (ROS)-based nanocatalytic tumor therapy is alluring owing to the capability to generate highly cytotoxic ∙OH radicals from tumoral H2O2. However, the antitumor efficacy is highly dependent on the radical generation efficiency and challenged by the high levels of antioxidative glutathione (GSH) in cancer cells. Herein, we report an IR-780 decorated, GSH-depleting Fe3O4@MIL-100 (IFM) nanocomposite for photo-enhanced tumor catalytic therapy by extensive production of ∙OH, which is realized by an integration of excellent peroxidase-like activity of IFM, selective upregulation of tumoral H2O2 by ß-lapachone, and localized hyperthermia by near infrared light irradiation. IFM shows potentiated antiproliferative effect in 4T1 cancer cells by ∙OH overproduction and glutathione scavenging, inducing intracellular redox dyshomeostasis and cell death by concurrent apoptosis and ferroptosis. In vivo antitumor investigation further demonstrates photoacoustic and fluorescence imaging-guided combinational therapy with a tumor inhibition rate of 96.4%. This study provides a strategy of photo-enhanced nanocatalytic tumor therapy by tumor-specific H2O2 amplification and hyperthermia.

17.
J Mater Chem B ; 10(33): 6296-6306, 2022 08 24.
Article in English | MEDLINE | ID: mdl-35904024

ABSTRACT

Platinum-based chemotherapy is widely used to treat various cancers. However, exogenous platinum is likely to cause severe side effects and drug resistance induced by upregulated glutathione (GSH) in cancer cells poses a threat to the management of cancer progression and recurrence. Anticancer copper-organic complexes are excellent candidates to substitute platinum-based chemotherapeutics, exhibiting lower systemic toxicity and even overcoming platinum-based chemotherapy resistance. Here, we report the GSH-resistance of copper(II) bis(diethyldithiocarbamate) (CuET) and its reversal of cisplatin resistance in non-small-cell lung cancer via cuproptosis. Electrochemistry and UV-vis spectroscopy studies demonstrate that CuET possesses a lower reduction potential and the reaction inertness with GSH. Importantly, CuET overcomes the drug resistance of A549/DDP cells and the anticancer effect is hardly affected by intracellular GSH levels. To improve the solubility and bioavailability, bovine serum albumin-stabilized CuET nanoparticles (NPs) are prepared and they have a high drug loading content of 27.5% and excellent physiological stability. In vitro studies manifest that CuET NPs augment the distributions in the cytosol and cytoskeleton, inducing cell death via cuproptosis in A549/DDP cells, which is distinctly different from the apoptosis pattern induced by cisplatin. In vivo antitumor evaluation shows that the nanomedicine has superior biosafety and potent antitumor activity in a cisplatin-resistant tumor model. Our study suggests that copper-organic complex-based nanosystems could be a powerful toolbox to tackle the platinum-based drug resistance and systemic toxicity concerns.


Subject(s)
Apoptosis , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Cell Line, Tumor , Cisplatin/chemistry , Copper/pharmacology , Copper/therapeutic use , Drug Resistance, Neoplasm , Glutathione/metabolism , Lung Neoplasms/pathology , Nanomedicine , Platinum/pharmacology
18.
Adv Colloid Interface Sci ; 305: 102686, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35523098

ABSTRACT

Metal-organic frameworks (MOFs) are a class of important porous, crystalline materials composed of metal ions (clusters) and organic ligands. Owing to the unique redox chemistry, photochemical and electrical property, and catalytic activity of Cu2+/+, copper-based MOFs (Cu-MOFs) have been recently and extensively explored in various biomedical fields. In this review, we first make a brief introduction to the synthesis of Cu-MOFs and their composites, and highlight the recent synthetic strategies of two most studied representatives, three-dimensional HKUST-1 and two-dimensional Cu-TCPP. The recent advances of Cu-MOFs in the applications of cancer treatment, bacterial inhibition, biosensing, biocatalysis, and wound healing are summarized and discussed. Furthermore, we propose a prospect of the future development of Cu-MOFs in biomedical fields and beyond.


Subject(s)
Metal-Organic Frameworks , Copper , Ions , Metal-Organic Frameworks/chemistry , Metals , Porosity
20.
Bioact Mater ; 15: 203-213, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35386343

ABSTRACT

Bacterial infection is a vital factor to delay the wound healing process. The antibiotics abuse leads to drug resistance of some pathogenic bacteria. Non-antibiotic-dependent multifunctional biomaterials with accelerated wound healing performance are urgently desired. Herein, we reported a composite antibacterial hydrogel PDA-PAM/Mg2+ that shows excellent self-healing and tissue adhesive property, and photothermal antibacterial functions for accelerating wound healing. The gel was composed of polyacrylamide (PAM), polydopamine (PDA), and magnesium (Mg2+) and prepared via a two-step procedure: an alkali-induced dopamine pre-polymerization and followed radical polymerization process. The composite gel shows excellent tissue adhesiveness and Mg2+-synergized photothermal antibacterial activity, inducing a survival rate of 5.29% for S. aureus and 7.06% for E. coli after near infrared light irradiation. The composite hydrogel further demonstrated efficient bacteria inhibition, enhanced wound healing and collagen deposition in a full-thickness skin defect rat model. Together, the PDA-PAM/Mg2+ hydrogel presents an excellent wound dressing with excellent tissue adhesion, wound healing, and antibacterial functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...