Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
World J Gastrointest Oncol ; 16(4): 1647-1659, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660668

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the leading causes of death due to its complexity, heterogeneity, rapid metastasis and easy recurrence after surgical resection. We demonstrated that combination therapy with transcatheter arterial chemoembolization (TACE), hepatic arterial infusion chemotherapy (HAIC), Epclusa, Lenvatinib and Sintilimab is useful for patients with advanced HCC. CASE SUMMARY: A 69-year-old man who was infected with hepatitis C virus (HCV) 30 years previously was admitted to the hospital with abdominal pain. Enhanced computed tomography (CT) revealed a low-density mass in the right lobe of the liver, with a volume of 12.9 cm × 9.4 cm × 15 cm, and the mass exhibited a "fast-in/fast-out" pattern, with extensive filling defect areas in the right branch of the portal vein and an alpha-fetoprotein level as high as 657 ng/mL. Therefore, he was judged to have advanced HCC. During treatment, the patient received three months of Epclusa, three TACE treatments, two HAIC treatments, three courses of sintilimab, and twenty-one months of lenvatinib. In the third month of treatment, the patient developed severe side effects and had to stop immunotherapy, and the Lenvatinib dose had to be halved. Postoperative pathological diagnosis indicated a complete response. The patient recovered well after the operation, and no tumor recurrence was found. CONCLUSION: Multidisciplinary conversion therapy for advanced enormous HCC caused by HCV infection has a significant effect. Individualized drug adjustments should be made during any treatment according to the patient's tolerance to treatment.

2.
Int J Pharm ; 652: 123812, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38237707

ABSTRACT

Although the exploration of the molecular mechanisms of Acute liver failure (ALF) is supported by a growing number of studies, the lack of effective therapeutic agents and measures indicates an urgent clinical need for the development of new drugs and treatment strategies. Herein, we focused on the treatment of ALF with grape-derived nanovesicles (GDNVs), and assessed its protective effects and molecular mechanisms against liver injury. In the mice model of ALF, prophylactic administration for three consecutive days and treatment with GDNVs after successful induction of ALF showed a significant reduction of ALT and AST activity in mouse serum, as well as a blockade of the release of inflammatory cytokines IL6, IL-1ß and TNF-α. Treatment with GDNVs significantly prevented the massive apoptosis of hepatocytes caused by LPS/D-GalN and down-regulated the activation and expression of the mitochondrial apoptosis-related proteins p53, Caspase 9, Caspase 8, Caspase 3 and Bax. GDNVs downregulated the release of chemokines during the inflammatory eruption in mice and inhibited the infiltration of peripheral monocytes into the liver by inhibiting CCR2/CCR5. Moreover, the pro-inflammatory phenotype of macrophages in the liver was reversed by GDNVs. GDNVs further reduced the activation of NLRP3-related pathways, and treatment with GDNVs activated the expression of autophagy-related proteins Foxo3a, Sirt1 and LC3-II in the damaged mouse liver, inducing autophagy to occur. GDNVs could exert hepatoprotective and inflammatory suppressive functions by increasing nuclear translocation of Nrf2 and upregulating HO-1 expression against exogenous toxin-induced oxidative stress in the liver. In conclusion, these results demonstrate that GDNVs alleviate LPS/D-GalN-induced ALF and have the potential to be used as a novel hepatoprotective agent for clinical treatment.


Subject(s)
Liver Failure, Acute , Vitis , Mice , Animals , Lipopolysaccharides/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Liver Failure, Acute/prevention & control , Liver/metabolism , Administration, Oral
3.
Free Radic Biol Med ; 212: 65-79, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38141889

ABSTRACT

Osteoporosis is a chronic disease that seriously affects the quality of life and longevity of the elderly, so exploring the mechanism of osteoporosis is crucial for drug development and treatment. Bone marrow mesenchymal stem cells are stem cells with multiple differentiation potentials in bone marrow, and changing their differentiation direction can change bone mass. As an extracellular superoxide dismutase, Superoxide Dismutase 3 (SOD3) has been proved to play an important role in multiple organs, but the detailed mechanism of action in bone metabolism is still unclear. In this study, the results of clinical serum samples ELISA and single cell sequencing chip analysis proved that the expression of SOD3 was positively correlated with bone mass, and SOD3 was mainly expressed in osteoblasts and adipocytes and rarely expressed in osteoblasts in BMSCs. In vitro experiments showed that SOD3 can promote osteogenesis and inhibit adipogenesis. Compared with WT mice, the mice that were knocked out of SOD3 had a significant decrease in bone mineral density and significant changes in related parameters. The results of HE and IHC staining suggested that knocking out SOD3 would lead to fat accumulation in the bone marrow cavity and weakened osteogenesis. Both in vitro and in vivo experiments indicated that SOD3 affects bone metabolism by promoting osteogenesis and inhibiting adipogenesis. The results of transcriptome sequencing and revalidation showed that SOD3 can affect the expression of FLT1. Through in vitro experiments, we proved that FLT1 can also promote osteogenesis and inhibit adipogenesis. In addition, through the repeated experiments, the interaction between the two molecules (SOD3 and FLT1) was verified again. Finally, it was verified by WB that SOD3 regulates FLT1 to affect bone metabolism through PI3K/AKT and MAPK pathways.


Subject(s)
Adipogenesis , Osteoporosis , Humans , Mice , Animals , Aged , Adipogenesis/physiology , Osteogenesis/physiology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Quality of Life , Cell Differentiation/physiology , Osteoporosis/metabolism , Osteoblasts/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Vascular Endothelial Growth Factor Receptor-1
4.
Biomater Adv ; 154: 213592, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37717364

ABSTRACT

Acute liver failure (ALF) is a life-threatening clinical syndrome mostly induced by viral infections or drug abuse. As a novel therapeutic adjuvant or delivery vehicle, plant-derived exosome-like nanovesicles (PELNVs) have been extensively studied in recent years. This study aimed to develop garlic-derived exosome-like nanovesicles (GaELNVs) in order to ameliorate liver injury induced by LPS/D-GalN in mice, inhibit inflammatory eruption and reduce inflammatory cells infiltration. The results showed that treatment with GaELNVs improved liver pathology and reduced the levels of soluble inflammatory mediators IL-6, IL-1ß and TNF-α in the serum of ALF mice. GaELNVs reversed the upregulation of Cleaved Caspase-9, Cleaved Caspase-3, p53 and Bax expression and decreased Bcl2 activation caused by D-GalN/LPS, and inhibited NF-κB p65 expression and translocation to the nucleus. Meanwhile, treatment with GaELNVs resulted significant reduction in NLRP3 activation and Caspase-1 maturation, as well as decrease in the release of the inflammatory mediator IL-18. Additionally, an upregulation of the expression of proteins related to energy metabolism and autophagy occurrence including Foxo3a, Sirt1, and LC3-II was detected in the liver. Oral administration of GaELNVs also led to significant alteration in the expression of F4/80 and CD11b in the liver. Furthermore, the detection of chemokines in mouse liver tissue revealed that GaELNVs exhibited minimal reduction in the expression of CCL2, CCL3, CCL5 and CCL8. The decreased expression of CCR2 and CCR5 in the liver suggests that GaELNVs have the ability to decrease the recruitment of monocytes from the circulation to the liver. A reduction in the infiltration of F4/80loCD11bhi monocyte-derived macrophages into the liver was also observed. This study provides novel evidence that GaELNVs can ameliorate inflammatory eruptions and hinder the migration of circulating monocytes to the liver, as well as decrease macrophage infiltration by inhibiting CCR2/CCR5 signaling. Consequently, GaELNVs hold promise as a novel therapeutic agent for clinical management of liver disease.


Subject(s)
Exosomes , Garlic , Liver Failure, Acute , Animals , Mice , Antioxidants/pharmacology , Inflammation/drug therapy , Lipopolysaccharides/toxicity , Liver Failure, Acute/chemically induced , Liver Failure, Acute/drug therapy , Liver Failure, Acute/pathology
5.
Materials (Basel) ; 16(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629968

ABSTRACT

The dynamic characteristics of the filling body are the key parameters for designing the filling ratio and evaluating the stability of an underground stope. The different environment (water-bearing state) of the filling body in the underground stope exerts a complex impact on the mechanical behavior of the filling body. Therefore, six groups of cemented filling body specimens with different states were formed and subjected to dynamic uniaxial impact tests. The effects of water content on the mechanical properties, fractal dimension, and deformation damage characteristics of the cemented backfill under dynamic load were analyzed in depth, and a dynamic damage constitutive model that considers water damage and the compaction stage was established. The results indicate the following: (1) Due to the change of the specimen from the dry state to the water saturation state, the dynamic compressive strength of the cemented filling body decreases from 5.03 Mpa to 1.79 Mpa; however, the ductility of the specimen generally increases, and the filling body specimens with different water contents mainly exhibit tensile failure. (2) There is a significant nonlinear relationship between the water content and the fractal dimension Db of the cemented backfill specimen, and the growth rate of the fractal dimension Db tends to slow down with the increase in the water content. (3) From the energy evolution perspective, the water content of the specimen exerts a significant effect on the elastic deformation and failure stage of the stress-strain curve, and the slope of the dissipated energy-strain curve decreases with the increase in water content. (4) Based on the Weibull distribution and damage theory, a statistical damage constitutive model of cemented backfill was established, and it was compared with the experimental curve to verify the rationality of the model. Therefore, the relationship between stress and damage and the strain curves is discussed, and it is inferred that the damage evolution curve of cemented backfill is a typical S-shaped curve that exhibits a stable development-rapid increase-tending to be gentle. This study can provide a theoretical reference for further understanding the dynamic behavior and stability of backfill under different water conditions.

6.
Fish Shellfish Immunol ; 141: 109021, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37633342

ABSTRACT

In mammals, fas-associated protein with death domain (FADD) is involved in the process of cell apoptosis and plays a key role in innate immune signaling. Nevertheless, its detailed molecular mechanisms underlying apoptosis and immune responses to exogenous bacterial infections in teleosts remain largely unknown. In this study, a group of 60 hybrid yellow catfish (with the body weight of 25 ± 0.5 g) were used in subsequent experiments, we examined the expression profiling of fadd gene through comparative genomics and comparative immunological methods. Our results showed that fadd in the hybrid yellow catfish (hycfadd) exhibited similar gene and spatial structures to those in other vertebrates, and formed an independent clade in phylogeny. An expression pattern analysis revealed that hycfadd widely transcribed in various tissues, with the highest transcription level in the liver. Furthermore, expression profiling of hycfadd when intraperitoneally infected with 50 µL of exogenous Aeromonas hydrophila (2.0 × 107 CFU/mL) or Edwardsiella tarda (2.0 × 107 CFU/mL) within 48 h were significantly up-regulated in the kidney, spleen, liver and intestine. Important genes in the toll like receptor (tlr) 1-tlr2- myeloid differentiation primary response 88 (MyD88)-fadd-caspase (casp) 8 cascades of TLR signaling pathway in liver were significantly up-regulated after the A. hydrophila stimulation, suggesting that apoptosis through the TLR signaling pathway may have been triggered and activated, which were further verified in the liver, kidney, spleen, intestine and gill by a TUNEL assay. Overall, this study provides solid evidence for the bacterial induction of fadd-related apoptosis in teleosts.


Subject(s)
Bacterial Infections , Catfishes , Fish Diseases , Animals , Aeromonas hydrophila/physiology , Edwardsiella tarda/genetics , Spleen/metabolism , Fish Proteins/chemistry , Gene Expression Profiling/veterinary , Gene Expression Regulation , Mammals/metabolism
7.
ACS Omega ; 8(30): 26663-26684, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37546608

ABSTRACT

Cooking is a daily activity in every household, which consumes energy and produces pollution. Using clean gas fuels instead of traditional solid fuels will significantly reduce household air pollution. Although the use of clean-burning burners can reduce emissions, early domestic gas cookers had poor thermal performance. Currently, even small improvements in efficiency can result in significant energy savings due to the large number of domestic gas stoves in use. There has been a long history of research into the development of domestic gas stoves to improve performance and reduce energy consumption. Meanwhile, research into the use of hydrogen-enriched natural gas as a promising environmentally friendly fuel is increasing. In this paper, we perform a descriptive statistics and graphical visualization of network analysis by combining common databases with Bibliometrix. We also analyze the energy balance of domestic gas stoves and the influence of a single factor and multiple factors on stove performance. Then we provide a detailed overview of some research technologies in enhancing the thermal performance of gas stoves. We also discuss the research progress and application prospects for the use of hydrogen-enriched natural gas as a fuel in domestic gas stoves and identify areas for future research and issues that need attention.

8.
Front Immunol ; 14: 1163781, 2023.
Article in English | MEDLINE | ID: mdl-37056759

ABSTRACT

Toll-like receptor 1 (TLR1) mediates the innate immune response to a variety of microbes through recognizing cell wall components (such as bacterial lipoproteins) in mammals. However, the detailed molecular mechanism of TLR1 involved in pathogen immunity in the representative hybrid yellow catfish (Pelteobagrus fulvidraco ♀ × P. vachelli ♂) has not been well studied. In the present study, we identified the TLR1 gene from the hybrid yellow catfish, and further comparative synteny data from multiple species confirmed that the TLR1 gene is highly conserved in teleosts. Phylogenetic analysis revealed distinguishable TLR1s in diverse taxa, suggesting consistence in evolution of the TLR1 proteins with various species. Structural prediction indicated that the three-dimensional structures of TLR1 proteins are relatively conserved among different taxa. Positive selection analysis showed that purifying selection dominated the evolutionary process of TLR1s and TLR1-TIR domain in both vertebrates and invertebrates. Expression pattern analysis based on the tissue distribution showed that TLR1 mainly transcribed in the gonad, gallbladder and kidney, and the mRNA levels of TLR1 in kidney were remarkably up-regulated after Aeromonas hydrophila stimulation, indicating that TLR1 participates in the inflammatory responses to exogenous pathogen infection in hybrid yellow catfish. Homologous sequence alignment and chromosomal location indicated that the TLR signaling pathway is very conserved in the hybrid yellow catfish. The expression patterns of TLR signaling pathway related genes (TLR1- TLR2 - MyD88 - FADD - Caspase 8) were consistent after pathogen stimulation, revealing that the TLR signaling pathway is triggered and activated after A. hydrophila infection. Our findings will lay a solid foundation for better understanding the immune roles of TLR1 in teleosts, as well as provide basic data for developing strategies to control disease outbreak in hybrid yellow catfish.


Subject(s)
Catfishes , Toll-Like Receptor 1 , Animals , Toll-Like Receptor 1/genetics , Aeromonas hydrophila/physiology , Catfishes/genetics , Phylogeny , Toll-Like Receptors , Signal Transduction , Mammals
9.
Integr Zool ; 18(6): 1072-1088, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36896744

ABSTRACT

Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world. Schizothorax wangchiachii (SW) is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China. It is unclear how artificially bred SW adapts to the changeable wild environment post-release, after being in a controlled and very different artificial environment. Thus, the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0 (before release), 5, 10, 15, 20, 25, and 30 after release to the lower reaches of the Yalong River. The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5, and this feeding habit is gradually stabilized at day 15. Prior to release, Fusobacteria are the dominant bacteria in the gut microbiota of SW, while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release. The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild. Overall, the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW. This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.


Subject(s)
Cyprinidae , Gastrointestinal Microbiome , Microbiota , Animals , RNA, Ribosomal, 16S/genetics , Cyprinidae/genetics , Rivers
10.
Animals (Basel) ; 13(2)2023 Jan 14.
Article in English | MEDLINE | ID: mdl-36670828

ABSTRACT

As a major mediator of cellular response to viral infection in mammals, Toll-like receptor 3 (TLR3) was proved to respond to double-stranded RNA (dsRNA). However, the molecular mechanism by which TLR3 functions in the viral infection response in teleosts remains to be investigated. In this study, the Toll-like receptor 3 gene of the hybrid yellow catfish was identified and characterized by comparative genomics. Furthermore, multiple sequence alignment, genomic synteny and phylogenetic analysis suggested that the homologous TLR3 genes were unique to teleosts. Gene structure analysis showed that five exons and four introns were common components of TLR3s in the 12 examined species, and interestingly the third exon in teleosts was the same length of 194 bp. Genomic synteny analysis indicated that TLR3s were highly conserved in various teleosts, with similar organizations of gene arrangement. De novo predictions showed that TLR3s were horseshoe-shaped in multiple taxa except for avian (with a round-shaped structure). Phylogenetic topology showed that the evolution of TLR3 was consistent with the evolution of the studied species. Selection analysis showed that the evolution rates of TLR3 proteins were usually higher than those of TLR3-TIR domains, indicating that the latter were more conserved. Tissue distribution analysis showed that TLR3s were widely distributed in the 12 tested tissues, with the highest transcriptions in liver and intestine. In addition, the transcription levels of TLR3 were significantly increased in immune-related tissues after infection of exogenous Aeromonas hydrophila and poly (I:C). Molecular docking showed that TLR3 in teleosts forms a complex with poly (I:C). In summary, our present results suggest that TLR3 is a pattern recognition receptor (PRR) gene in the immune response to pathogen infections in hybrid yellow catfish.

11.
Front Chem ; 10: 1026924, 2022.
Article in English | MEDLINE | ID: mdl-36353142

ABSTRACT

Pancreatic cancer (PC) is one of the deadliest gastrointestinal malignancies. Advances in molecular biology and surgery have significantly improved survival rates for other tumors in recent decades, but clinical outcomes for PC remained relatively unchanged. Chemodynamic therapy (CDT) and Photothermal therapy (PTT) represent an efficient and relatively safe cancer treatment modality. Here, we synthesized Mn-doped Prussian blue nanoparticles (MnPB NPs) through a simple and mild method, which have a high loading capacity for drugs and excellent CDT/PTT effect. Cell line experiments in vitro and animal experiments in vivo proved the safety of MnPB NPs. We stimulated the PC cells with MnPB NPs and performed transwell migration assays. The migration of PC cells was reduced company with the decrease of two classical proteins: matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9). Moreover, MnPB NPs induced ferroptosis, which mediated the MAPK pathway and achieved tumor elimination in nude mice. This effective and safe strategy controlled by irradiation represents a promising strategy for pancreatic cancer.

12.
Arch Osteoporos ; 16(1): 161, 2021 10 30.
Article in English | MEDLINE | ID: mdl-34716464

ABSTRACT

Both anemia and osteoporosis are common in type 2 diabetes mellitus (T2DM). However, the relationship between them remains to be determined. This study showed that anemia was related to osteoporosis in male and female T2DM patients. Diabetes patients with anemia should also be wary of osteoporosis. INTRODUCTION: Anemia and osteoporosis are considered complications of type 2 diabetes mellitus (T2DM). However, the relationship between anemia and osteoporosis in the T2DM population remains to be determined. Thus, we planned the present study to verify their relationship. METHODS: A retrospective cross-sectional study was performed. The patients were divided into groups according to sex and hemoglobin levels (Q1: ≤ 120, Q2: 120 to ≤ 140, Q3: > 140 in men; Q1: ≤ 110, Q2: 110 to ≤ 130, Q3: > 130 in women). Clinical characteristics and bone mineral density (BMD) were compared. The relationship between anemia and osteoporosis was determined after adjusting for age, diabetic duration, body mass index, alanine aminotransferase, creatinine, HbA1c, and fasting C-peptide. Statistical analysis was performed using SPSS 26.0. RESULTS: This study included 2336 patients (1150 men and 1186 postmenopausal women). The percentage of osteoporosis differed by hemoglobin status in both men (Q1: 20.2%, Q2: 15.5%, Q3: 12.4%, P = 0.031) and women (Q1: 51.4%, Q2: 38.0%, Q3: 34.5%, P < 0.001). Q1, with the lowest hemoglobin level, has higher percentage of osteoporosis in men (20.2%) and in women (51.4%). Hip BMD (men: r = 0.168, P < 0.001, women: r = 0.126, P < 0.001) and femur neck BMD (men: r = 0.150, P < 0.001, women: r = 0.134, P < 0.001) were correlated with hemoglobin levels in both sexes. The odds of osteoporosis increased 1.4-fold in men and 2.0-fold in women in the Q1 groups compared with Q3 groups. CONCLUSION: Anemia was related to osteoporosis in T2DM patients regardless of sex. Diabetic patients with anemia (men with hemoglobin below 120 g/L and women with hemoglobin below 110 g/L) should also be wary of osteoporosis.


Subject(s)
Anemia , Diabetes Mellitus, Type 2 , Osteoporosis , Anemia/epidemiology , China , Cross-Sectional Studies , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/epidemiology , Female , Humans , Male , Osteoporosis/epidemiology , Retrospective Studies
13.
Clin Appl Thromb Hemost ; 27: 10760296211040868, 2021.
Article in English | MEDLINE | ID: mdl-34558325

ABSTRACT

The purpose of this study is to establish a novel pulmonary embolism (PE) risk prediction model based on machine learning (ML) methods and to evaluate the predictive performance of the model and the contribution of variables to the predictive performance. We conducted a retrospective study at the Shanghai Tenth People's Hospital and collected the clinical data of in-patients that received pulmonary computed tomography imaging between January 1, 2014 and December 31, 2018. We trained several ML models, including logistic regression (LR), support vector machine (SVM), random forest (RF), and gradient boosting decision tree (GBDT), compared the models with representative baseline algorithms, and investigated their predictability and feature interpretation. A total of 3619 patients were included in the study. We discovered that the GBDT model demonstrated the best prediction with an area under the curve value of 0.799, whereas those of the RF, LR, and SVM models were 0.791, 0.716, and 0.743, respectively. The sensibilities of the GBDT, LR, RF, and SVM models were 63.9%, 68.1%, 71.5%, and 75%, respectively; the specificities were 81.1%, 66.1, 72.7%, and 65.1%, respectively; and the accuracies were 77.8%, 66.5%, 72.5%, and 67%, respectively. We discovered that the maximum D-dimer level contributed the most to the outcome prediction, followed by the extreme growth rate of the plasma fibrinogen level, in-hospital duration, and extreme growth rate of the D-dimer level. The study demonstrates the superiority of the GBDT model in predicting the risk of PE in hospitalized patients. However, in order to be applied in clinical practice and provide support for clinical decision-making, the predictive performance of the model needs to be prospectively verified.


Subject(s)
Machine Learning/standards , Pulmonary Embolism/epidemiology , Aged , Cross Infection , Female , Hospitalization , Humans , Male , Prognosis , Retrospective Studies
14.
Free Radic Res ; 55(3): 275-281, 2021 Mar.
Article in English | MEDLINE | ID: mdl-34082660

ABSTRACT

To investigate the relationship between serum superoxide dismutase (SOD) activity and the presence of chronic complications in patients with type 2 diabetes mellitus (T2DM). We conducted a retrospective cross-sectional study in patients with T2DM. They were assigned to three groups (Q1, Q2, and Q3) by SOD levels in both sexes. Clinical characteristics, cardiovascular disease, diabetic retinopathy, nephropathy, and peripheral neuropathy were compared. The relationship between the SOD and the prevalence of chronic complications was analyzed by binary logistic regression. Statistical analysis was performed in SPSS 26.0 (SPSS Inc., Chicago, IL). A total of 645 T2DM patients (401 men and 244 women) with complete data for SOD and medical records of complications were included. In men, patients in the Q1 group (lowest serum SOD activity) had the highest prevalence of diabetes with atherosclerosis (AS) (p<.001), DN (p=.029), and DPN (p=.001). In comparison, only DN was found to have the highest prevalence in the Q1 group in women (p=.010). In the multivariate analysis, patients in the Q1 group had a 3.0-, 1.6-, 1.9-, and 2.4-fold risk for the prevalence of AS, DR, DN, and DPN, respectively, compared with the Q3 group. In women, a 7.0-fold risk for the prevalence of DN in the Q1 group was found compared with the Q3 group. After adjusting for the age, duration of T2DM, body mass index, pulse pressure, alanine transaminase, clearance of creatinine, triglyceride, glycosylated hemoglobin, and fasting C-peptide in the models, the differences found in both men and women persisted. SOD activity is related to cardiovascular and microvascular diseases in men and the prevalence of diabetic nephropathy in women in T2DM.


Subject(s)
Diabetes Complications/complications , Diabetes Mellitus, Type 2/genetics , Superoxide Dismutase/metabolism , Chronic Disease , Female , Humans , Male , Prevalence
15.
Cell Cycle ; 6(3): 330-8, 2007 Feb 01.
Article in English | MEDLINE | ID: mdl-17297311

ABSTRACT

It is well known that MAPK plays pivotal roles in oocyte maturation, but the function of MEK (MAPK kinase) remains unknown. We have studied the expression, subcellular localization and functional roles of MEK during meiotic maturation of mouse oocytes. Firstly, we found that MEK1/2 phoshorylation (p-MEK1/2, indicative of MEK activation) was low in GV (germinal vesicle) stage, increased 2h after GVBD (germinal vesicle breakdown), and reached the maximum at metaphase II. Secondly, we found that P-MEK1/2 was restricted in the GV prior to GVBD. In prometaphase I and metaphase I, P-MEK1/2 was mainly associated with the spindle, especially with the spindle poles. At anaphase I and telophase I, p-MEK1/2 became diffusely distributed in the region between the separating chromosomes, and then became associated with the midbody. The association of p-MEK1/2 with spindle poles was further confirmed by its colocalization with the centrosomal proteins, gamma-tubulin and NuMA. Thirdly, we have investigated the possible functional role of MEK1/2 activation by intravenous administration and intrabursal injection of a specific MEK inhibitor, U0126, and by microinjection of MEK siRNA into oocytes. All these manipulations cause disorganized spindle poles and spindle structure, misaligned chromosomes and larger than normal polar bodies. Our results suggest that MEK1/2 may function as a centrosomal protein and may have roles in microtubule organization, spindle pole tethering and asymmetric division during mouse oocyte maturation.


Subject(s)
MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 2/metabolism , Microtubules/metabolism , Oocytes/metabolism , Spindle Apparatus/metabolism , Animals , Butadienes/pharmacology , Female , Fluorescent Antibody Technique , Immunoblotting , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 2/genetics , Meiosis/drug effects , Mice , Mice, Inbred ICR , Microscopy, Confocal , Nitriles/pharmacology , Nocodazole/pharmacology , Oocytes/cytology , Oocytes/drug effects , Oogenesis/drug effects , Paclitaxel/pharmacology , Phosphorylation/drug effects , RNA Interference , Spindle Apparatus/drug effects
16.
Biol Reprod ; 68(3): 968-77, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12604650

ABSTRACT

Mitogen-activated protein kinase (MAPK) becomes activated during the meiotic maturation of pig oocytes, but its physiological substrate is unknown. The 90-kDa ribosome S6 protein kinase (p90rsk) is the best known MAPK substrate in Xenopus and mouse oocytes. The present study was designed to investigate the expression, phosphorylation, subcellular localization, and possible roles of p90rsk in porcine oocytes during meiotic maturation, fertilization, and parthenogenetic activation. This kinase was partially phosphorylated in oocytes at germinal vesicle (GV) stage through a MAPK-independent mechanism, but its full phosphorylation is dependent on MAPK activity. After fertilization or electrical activation, p90rsk was dephosphorylated shortly before pronucleus formation, which coincided with the inactivation of MAPK. A protein phosphatase inhibitor, okadaic acid, accelerated the phosphorylation of p90rsk during meiotic maturation and induced its rephosphorylation in activated eggs. MAPK kinase (MAPKK or MEK) inhibitor U0126 inhibited the activation of MAPK and p90rsk in both cumulus-enclosed and denuded pig oocytes, but prevented GV breakdown (GVBD) only in cumulus-enclosed oocytes. Active MAPK and p90rsk were detected in pig cumulus cells, and U0126 induced their dephosphorylation. In meiosis II arrested eggs, U0126 led to the inactivation of MAPK and p90rsk, as well as the interphase transition of the eggs. P90rsk was distributed evenly in GV oocytes, but it accumulated in the nucleus before GVBD. It was localized to the meiotic spindle after GVBD and concentrated in the spindle mid zone during emission of the polar bodies. All these results suggest that p90rsk is downstream of MAPK and plays functional roles in the regulation of nuclear status and microtubule organization. Although MAPK and p90rsk activity are not essential for the spontaneous meiotic resumption in denuded oocytes, activation of this cascade in cumulus cells is indispensable for the gonadotropin-induced meiotic resumption of pig oocytes.


Subject(s)
Meiosis/physiology , Mitogen-Activated Protein Kinases/metabolism , Oocytes/enzymology , Ribosomal Protein S6 Kinases, 90-kDa/metabolism , Swine/physiology , Animals , Blotting, Western/veterinary , Butadienes/pharmacology , Electrophoresis, Polyacrylamide Gel/veterinary , Enzyme Activation , Enzyme Inhibitors/pharmacology , Female , Fertilization in Vitro , Male , Microscopy, Confocal , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Nitriles/pharmacology , Okadaic Acid/pharmacology , Oocytes/physiology , Parthenogenesis , Phosphorylation , Pregnancy , Ribosomal Protein S6 Kinases, 90-kDa/antagonists & inhibitors , Subcellular Fractions/enzymology , Subcellular Fractions/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...