Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Nat Commun ; 15(1): 7585, 2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39217172

ABSTRACT

Continued evolution of SARS-CoV-2 generates variants to challenge antibody immunity established by infection and vaccination. A connection between population immunity and genesis of virus variants has long been suggested but its molecular basis remains poorly understood. Here, we identify a class of SARS-CoV-2 neutralizing public antibodies defined by their shared usage of VL6-57 light chains. Although heavy chains of diverse genotypes are utilized, convergent HCDR3 rearrangements have been observed among these public antibodies to cooperate with germline VL6-57 LCDRs to target a convergent epitope defined by RBD residues S371-S373-S375. Antibody repertoire analysis identifies that this class of VL6-57 antibodies is present in SARS-CoV-2-naive individuals and is clonally expanded in most COVID-19 patients. We confirm that Omicron-specific substitutions at S371, S373 and S375 mediate escape of antibodies of the VL6-57 class. These findings support that this class of public antibodies constitutes a potential immune pressure promoting the introduction of S371L/F-S373P-S375F in Omicron variants. The results provide further molecular evidence to support that antigenic evolution of SARS-CoV-2 is driven by antibody mediated population immunity.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Humans , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , Epitopes/immunology , Epitopes/genetics , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology
2.
Cell Rep ; 43(6): 114265, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38805396

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein continues to evolve antigenically, impacting antibody immunity. D1F6, an affinity-matured non-stereotypic VH1-2 antibody isolated from a patient infected with the SARS-CoV-2 ancestral strain, effectively neutralizes most Omicron variants tested, including XBB.1.5. We identify that D1F6 in the immunoglobulin G (IgG) form is able to overcome the effect of most Omicron mutations through its avidity-enhanced multivalent S-trimer binding. Cryo-electron microscopy (cryo-EM) and biochemical analyses show that three simultaneous epitope mutations are generally needed to substantially disrupt the multivalent S-trimer binding by D1F6 IgG. Antigenic mutations at spike positions 346, 444, and 445, which appeared in the latest variants, have little effect on D1F6 binding individually. However, these mutations are able to act synergistically with earlier Omicron mutations to impair neutralization by affecting the interaction between D1F6 IgG and the S-trimer. These results provide insight into the mechanism by which accumulated antigenic mutations facilitate evasion of affinity-matured antibodies.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/metabolism , SARS-CoV-2/immunology , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Humans , Antibodies, Viral/immunology , Antibodies, Neutralizing/immunology , COVID-19/virology , COVID-19/immunology , Epitopes/immunology , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Cryoelectron Microscopy , Protein Binding
3.
Emerg Microbes Infect ; 13(1): 2290841, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38044868

ABSTRACT

Neutralizing antibodies are a key component in protective humoral immunity against SARS-CoV-2. Currently, available technologies cannot track epitope-specific antibodies in global antibody repertoires. Thus, the comprehensive repertoire of spike-specific neutralizing antibodies elicited by SARS-CoV-2 infection is not fully understood. We therefore combined high-throughput immunoglobulin heavy chain (IgH) repertoire sequencing, and structural and bioinformatics analysis to establish an antibodyomics pipeline, which enables tracking spike-specific antibody lineages that target certain neutralizing epitopes. We mapped the neutralizing epitopes on the spike and determined the epitope-preferential antibody lineages. This analysis also revealed numerous overlaps between immunodominant neutralizing antibody-binding sites and mutation hotspots on spikes as observed so far in SARS-CoV-2 variants. By clustering 2677 spike-specific antibodies with 360 million IgH sequences that we sequenced, a total of 329 shared spike-specific antibody clonotypes were identified from 33 COVID-19 convalescents and 24 SARS-CoV-2-naïve individuals. Epitope mapping showed that the shared antibody responses target not only neutralizing epitopes on RBD and NTD but also non-neutralizing epitopes on S2. The immunodominance of neutralizing antibody response is determined by the occurrence of specific precursors in human naïve B-cell repertoires. We identified that only 28 out of the 329 shared spike-specific antibody clonotypes persisted for at least 12 months. Among them, long-lived IGHV3-53 antibodies are likely to evolve cross-reactivity to Omicron variants through accumulating somatic hypermutations. Altogether, we created a comprehensive atlas of spike-targeting antibody lineages in COVID-19 convalescents and antibody precursors in human naïve B cell repertoires, providing a valuable reference for future vaccine design and evaluation.


Subject(s)
Ascomycota , COVID-19 , Humans , SARS-CoV-2/genetics , Antibodies, Neutralizing , Epitopes , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
4.
Cell Res ; 33(10): 790-801, 2023 10.
Article in English | MEDLINE | ID: mdl-37666978

ABSTRACT

In Saccharomyces cerevisiae, cryptic transcription at the coding region is prevented by the activity of Sin3 histone deacetylase (HDAC) complex Rpd3S, which is carried by the transcribing RNA polymerase II (RNAPII) to deacetylate and stabilize chromatin. Despite its fundamental importance, the mechanisms by which Rpd3S deacetylates nucleosomes and regulates chromatin dynamics remain elusive. Here, we determined several cryo-EM structures of Rpd3S in complex with nucleosome core particles (NCPs), including the H3/H4 deacetylation states, the alternative deacetylation state, the linker tightening state, and a state in which Rpd3S co-exists with the Hho1 linker histone on NCP. These structures suggest that Rpd3S utilizes a conserved Sin3 basic surface to navigate through the nucleosomal DNA, guided by its interactions with H3K36 methylation and the extra-nucleosomal DNA linkers, to target acetylated H3K9 and sample other histone tails. Furthermore, our structures illustrate that Rpd3S reconfigures the DNA linkers and acts in concert with Hho1 to engage the NCP, potentially unraveling how Rpd3S and Hho1 work in tandem for gene silencing.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae Proteins , Histones/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Chromatin , DNA , Saccharomyces cerevisiae/metabolism , Histone Deacetylases/metabolism
5.
Nat Commun ; 14(1): 1058, 2023 02 24.
Article in English | MEDLINE | ID: mdl-36828833

ABSTRACT

SARS-CoV-2 Omicron variants feature highly mutated spike proteins with extraordinary abilities in evading antibodies isolated earlier in the pandemic. Investigation of memory B cells from patients primarily with breakthrough infections with the Delta variant enables isolation of a number of neutralizing antibodies cross-reactive to heterologous variants of concern (VOCs) including Omicron variants (BA.1-BA.4). Structural studies identify altered complementarity determining region (CDR) amino acids and highly unusual heavy chain CDR2 insertions respectively in two representative cross-neutralizing antibodies-YB9-258 and YB13-292. These features are putatively introduced by somatic hypermutation and they are heavily involved in epitope recognition to broaden neutralization breadth. Previously, insertions/deletions were rarely reported for antiviral antibodies except for those induced by HIV-1 chronic infections. These data provide molecular mechanisms for cross-neutralization of heterologous SARS-CoV-2 variants by antibodies isolated from Delta variant infected patients with implications for future vaccination strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Antibodies, Neutralizing , Antibodies, Viral , Spike Glycoprotein, Coronavirus
7.
Nat Microbiol ; 7(10): 1635-1649, 2022 10.
Article in English | MEDLINE | ID: mdl-36151403

ABSTRACT

Population antibody response is thought to be important in selection of virus variants. We report that SARS-CoV-2 infection elicits a population immune response that is mediated by a lineage of VH1-69 germline antibodies. A representative antibody R1-32 from this lineage was isolated. By cryo-EM, we show that it targets a semi-cryptic epitope in the spike receptor-binding domain. Binding to this non-ACE2 competing epitope results in spike destruction, thereby inhibiting virus entry. On the basis of epitope location, neutralization mechanism and analysis of antibody binding to spike variants, we propose that recurrent substitutions at 452 and 490 are associated with immune evasion of the identified population antibody response. These substitutions, including L452R (present in the Delta variant), disrupt interactions mediated by the VH1-69-specific hydrophobic HCDR2 to impair antibody-antigen association, enabling variants to escape. The first Omicron variants were sensitive to antibody R1-32 but subvariants that harbour L452R quickly emerged and spread. Our results provide insights into how SARS-CoV-2 variants emerge and evade host immune responses.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , Antibody Formation , Epitopes/genetics , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
8.
Thorac Cardiovasc Surg Rep ; 11(1): e30-e32, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35761984

ABSTRACT

Background The management of aortic lesions involving the aortic arch in patients who cannot tolerate thoracotomy is a challenge. Case Description A 32-year-old woman who underwent a giant aneurysm at the proximal end of the descending aorta with significant vascular wall calcification. The patient underwent Castor single-branched stent-grafting in the brachiocephalic trunk combined with surgical supra-aortic debranching, which avoided surgical aortic arch replacement and stent fenestration.reopening. The patient was followed up for 9 months, and surgery-related complications were not observed. Conclusion Hybrid arch repair with supra-aortic debranching and using Castor single-branched stent can be used to treat aortic lesions involving the aortic arch.

9.
Biomater Sci ; 8(9): 2694-2701, 2020 May 06.
Article in English | MEDLINE | ID: mdl-32267256

ABSTRACT

A multifunctional and effective medical adhesive with a combination of high toughness and superior adhesion is highly desired in biomedical fields. However, clinical application of medical adhesives is still limited due to their weak adhesion to wet tissue. In this study, a novel medical adhesive called TASK composed of tannic acid (TA) and silk fibroin (SF) based on polyphenol-gel systems was developed. TASK powder was prepared by a simple physical mixture of pyrogallol-rich tannic acid and silk fibroin in aqueous solution and further freeze drying, which was stable and convenient for sterilization before clinical application. The TASK composite gel was formed by just adding water to the TASK powder. TASK showed improved wet-adhesive properties and stability; its adhesion strength after 5 h in water reached 180.9 ± 27.4 kPa. ATR-FTIR results indicated that the plentiful phenolic hydroxyl groups in TA allowed TASK to maintain adhesion to tissue in a wet environment. Furthermore, no chemical modification or covalent cross-linking was required for this wet-adhesive TASK which may facilitate its clinical application.


Subject(s)
Fibroins , Tannins , Tissue Adhesives , Animals , Cell Line , Fibroins/chemistry , Fibroins/pharmacology , Gels , Liver/chemistry , Mice , Myocardium/chemistry , Powders , Rabbits , Skin/chemistry , Tannins/chemistry , Tannins/pharmacology , Tissue Adhesives/chemistry , Tissue Adhesives/pharmacology , Water/chemistry , Wound Healing
SELECTION OF CITATIONS
SEARCH DETAIL