Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Sep Sci ; 46(9): e2300046, 2023 May.
Article in English | MEDLINE | ID: mdl-36853146

ABSTRACT

As a famous health food, roots of Panax quinquefolium L. possessed immune regulation and enhancement of the central nervous system, in which ginsenosides are the main active component with different numbers and positions of sugars, causing different chemical polarities with a challenge for the separation and isolation. In this study, a fast and effective bilinear gradient counter-current chromatography was proposed for preparative isolation ginsenosides with a broad partition coefficient range from roots of Panax quinquefolium L. In terms of the established method, the mobile phases comprising n-butanol and ethyl acetate were achieved by adjusting the proportion. Coupled with the preparative HPLC, eleven main ginsenosides were successfully separated, including ginsenoside Rg1 (1), Re (2), acetyl ginsenoside Rg1 (3), Rb1 (4), Rc (5), Rg2 (6), Rb3 (7), quinquefolium R1 (8), Rd (9), gypenoside X VII (10) and notoginsenoside Fd (11), with purities exceeding 95% according to the HPLC results. Tandem mass spectrometry and electrospray ionization mass spectrometry were adopted for recognizing the isolated compound architectures. Our study suggests that linear gradient counter-current chromatography effectively separates the broad partition coefficient range of ginsenosides compounds from the roots of Panax quinquefolium L. In addition, it can apply to active compound isolation from other complicated natural products.


Subject(s)
Ginsenosides , Panax , Ginsenosides/chemistry , Chromatography, High Pressure Liquid/methods , Panax/chemistry , Countercurrent Distribution/methods , Plant Roots/chemistry
2.
J Colloid Interface Sci ; 581(Pt B): 964-978, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32956914

ABSTRACT

Supported copper oxides with well-dispersed metal species, small size, tunable valence and high stability are highly desirable in catalysis. Herein, novel copper oxide (CuOx) catalysts supported on defect-rich mesoporous alumina microspheres are developed using a spray-drying-assisted evaporation induced self-assembly method. The catalysts possess a special structure composed of a mesoporous outer layer, a mesoporous-nanosphere-stacked under layer and a hollow cavity. Because of this special structure and the defective nature of the alumina support, the CuOx catalysts are ultrasmall in size (1 ~ 3 nm), bivalent with a very high Cu+/Cu2+ ratio (0.7), and highly stable against sintering and oxidation at high temperatures (up to 800 °C), while the wet impregnation method results in CuOx catalysts with much larger sizes (~15 nm) and lower the Cu+/Cu2+ ratios (~0.29). The catalyst formation mechanism through the spray drying method is proposed and discussed. The catalysts show remarkable performance in catalytic ozonation of phenol wastewaters. With high-concentration phenol (250 ppm) as the model organic pollutant, the optimized catalyst delivers promising catalytic performance with 100% phenol removal and 53% TOC removal in 60 min, and a high cyclic stability. Superoxide anion free radicals (⋅O2-), singlet oxygen (1O2) and hydroxyl radicals (⋅OH) are the predominant reactive species. A detailed structure-performance study reveals the surface hydroxyl groups and Cu+/Cu2+ redox couples play cooperatively to accelerate O3 decomposition generating reactive radicals. The plausible catalytic O3 decomposition mechanism is proposed and discussed with supportive evidences.

3.
RSC Adv ; 11(17): 10353-10363, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-35423510

ABSTRACT

In this study, for the first time, we conducted full life-cycle studies on pollutants in a cement plant co-processing hazardous waste (HW) via the combined use of thermodynamic equilibrium calculations and the American Meteorological Society/Environmental Protection Regulatory Model. Results showed that the potential toxic elements (PTEs) can be classified into three categories: (1) non-volatized elements, Co; (2) semi-volatized elements, Cr and Ni; and (3) volatized elements, Cd, Pb and As. Besides, the spatial distributions of pollutants were strongly influenced by the prevalent wind direction and the size of the particulate matter they were absorbed on. The highest concentrations of most pollutants tended to be centralized at a distance in the range of 400 to 800 m away from the cement plant. Finally, validated results indicated that there is good agreement between the simulated and observed concentrations in this study. These findings can facilitate and assist local government authorities and policy makers with the management of urban air quality.

4.
RSC Adv ; 11(27): 16547-16556, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-35479134

ABSTRACT

Two sets of experiments were initially implemented to explore the best impregnation method and the best morphology substrate. In the first case, Pt/MnO2-r-WI catalyst showed a better performance than that of Pt/MnO2-r-IW. The test results illustrated that Wetness Impregnation (WI) could enhance the dispersion of Pt, ratios of Mn4+/Mn3+, Oads/Olatt and Pt4+/Pt0 as compared to those of Incipient Wetness Impregnation (IW). In the other method, MnO2-s catalyst displayed a higher catalytic efficiency than that of MnO2-r because the nanosphere morphology had larger BET surface area and pore volume to attract Pt atoms and toluene molecules. Therefore, the Pt/MnO2-s-WI catalyst was obtained and showed the best activity with low-temperature redox capability and oxygen mobility. It could eliminate toluene (T 90) at a low temperature of 205 °C and remain stable over 150 h. effects of calcination temperature, toluene concentration and gas hourly space velocity (GHSV) were also investigated herein. In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) was also implemented to explore the reaction mechanism. It demonstrated that toluene was firstly adsorbed over Pt δ+ on the surface before being oxidized to CO2 and H2O. The whole procedure follows the Mars-van Krevelen mechanism. This work gives a comprehensive understanding of the heterogeneous catalysis mechanism.

5.
J Colloid Interface Sci ; 551: 164-176, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31078098

ABSTRACT

In this paper, we demonstrate the facile and general synthesis of alkaline-earth metal manganites, denoted as A(Mg, Ca, Ba)MnxOy, for efficient degradation of high-concentration phenolic compounds via catalytic ozonation. The representative CaMnxOy oxides show a hierarchical spherical structure constructed by crystalline nanorods and numerous macropores. They possess mixed Mn4+/Mn3+ chemical valences and abundant surface hydroxyl (OH) groups. The ozone (O3) decomposition rate on the CaMnxOy catalysts is greatly accelerated and follows the first-order law. These catalysts are promising for the degradation of phenolic compounds via catalytic ozonation, exhibiting rapid pseudofirst-order degradation kinetics, a high total organic carbon (TOC) removal efficiency and an excellent stability. Under optimized conditions (a low O3 dosage of 1.5 mg/min and a catalyst dosage of 7.5 g/L), for the treatment of concentrated phenol (50-240 mg/L), the CaMnxOy catalysts show 100% degradation and 50-70% mineralization within 1.0 h. The Ca2+ ions are essential to create redox Mn4+/Mn3+ couples and to significantly reduce manganese leaching. High surface ratios of Mn4+/Mn3+ and OH/lattice oxygen (Olat) are beneficial for enhancing the catalytic performance. Superoxide anion free radicals (O2-) and singlet oxygen (1O2) are the predominant reactive species for the oxidation degradation. The O2- reaction pathway is proposed. Specifically, the surface OH sites activate O3, displaying highly enhanced decomposition rates. The generated O2- and 1O2 play a role in oxidation. The redox Mn4+/Mn3+ and the Olat/oxygen vacancy (Olat/Ovac) couples play important roles in electron transfer. The proposed mechanism is supported by active site probing, radical scavenging, spectroscopic studies, and the results in the degradation of substituted phenols.

6.
J Colloid Interface Sci ; 537: 112-122, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30423485

ABSTRACT

Adsorption and catalytic conversion of nitrophenols (NPs) over carbon-based materials have attracted wide interest. Batch adsorption and catalytic reduction of NPs have been widely reported, but less attention has been paid to flow systems, which require high particle size uniformity and superior active site accessibility. Herein, uniform mesoporous carbon hollow microspheres with their surfaces enriched by Au nanoparticles (denoted as Au@UMCHMs) are synthesized. The surface-enriched Au nanoparticle loading is promoted by the unique feature, that is, relatively dense external layers and mesoporous inner shells, of the carbon microspheres and the simple impregnation-reduction method. The Au@UMCHMs possess uniform sizes of ∼82 µm, small shell thickness of ∼5.8 µm, high specific surface area (∼1587 m2/g), and uniform mesopores (2.1 and 5.8 nm). They show excellent performance for flow adsorption and catalytic reduction of 4-nitrophenol (4-NP), superior to that of conventional Au-loaded carbon materials. In flow adsorption of 4-NP, the Au@UMCHMs show a fast and complete removal efficiency with high adsorption capacities (∼223 mg/g at breakthrough). They show outstanding performance in flow catalytic reduction of 4-NP. 4-NP with high concentrations (up to 100 mg/L) can be ultrafast and completely catalytically reduced to 4-aminophenol (4-AP) under rapid flow rates (up to ∼25 mL/min).

7.
J Colloid Interface Sci ; 506: 1-9, 2017 Nov 15.
Article in English | MEDLINE | ID: mdl-28709016

ABSTRACT

Significant research has been focused on the synthesis of metal-organic frameworks (MOFs) with controllable compositions and structures, while much fewer works have been devoted to the construction of large micro-sized MOFs with uniform sizes and morphologies, which could be beneficial for practical applications. In this paper, a unique microfluidic jet spray drying technology has been adopted to reassemble nano-sized MIL-101 building blocks into hierarchical microparticles with uniform and large particle sizes. Specifically, suspension precursors of nano-sized MIL-101 building blocks are atomized into uniform droplets and then converted to microparticles on a one-to-one basis through a fast and scalable spray drying process. The particle size and morphology can be controlled by adjusting the solid concentration of the suspension and the drying temperature. The particle formation process with evolution of different morphologies are discussed. The resultant uniform MIL-101 microparticles possess hierarchical porosities and maintain the intrinsic crystal structure, microporosity and thermal stability of the nano-sized building blocks. They demonstrate a high efficiency toward benzene adsorption from n-octane solutions with high adsorption rates and very high adsorption capacities under batch conditions. Moreover, the large particle size and hierarchical structure make them applicable as filler of a fixed bed for dynamic flow separation of benzene from n-octane solutions with promising performance. The microfluidic jet spray drying technology can also be extended for the reassembly of other uniform MOF microparticles.

8.
Polymers (Basel) ; 8(5)2016 May 14.
Article in English | MEDLINE | ID: mdl-30979289

ABSTRACT

Microencapsulation is highly attractive for oral drug delivery. Microparticles are a common form of drug carrier for this purpose. There is still a high demand on efficient methods to fabricate microparticles with uniform sizes and well-controlled particle properties. In this paper, uniform hydroxypropyl methylcellulose phthalate (HPMCP)-based pharmaceutical microparticles loaded with either hydrophobic or hydrophilic model drugs have been directly formulated by using a unique aerosol technique, i.e., the microfluidic spray drying technology. A series of microparticles of controllable particle sizes, shapes, and structures are fabricated by tuning the solvent composition and drying temperature. It is found that a more volatile solvent and a higher drying temperature can result in fast evaporation rates to form microparticles of larger lateral size, more irregular shape, and denser matrix. The nature of the model drugs also plays an important role in determining particle properties. The drug release behaviors of the pharmaceutical microparticles are dependent on their structural properties and the nature of a specific drug, as well as sensitive to the pH value of the release medium. Most importantly, drugs in the microparticles obtained by using a more volatile solvent or a higher drying temperature can be well protected from degradation in harsh simulated gastric fluids due to the dense structures of the microparticles, while they can be fast-released in simulated intestinal fluids through particle dissolution. These pharmaceutical microparticles are potentially useful for site-specific (enteric) delivery of orally-administered drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...