Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Pharmaceutics ; 16(5)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38794264

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is an acute enteric coronavirus, inducing watery diarrhea and high mortality in piglets, leading to huge economic losses in global pig industry. Ivermectin (IVM), an FDA-approved antiparasitic agent, is characterized by high efficacy and wide applicability. However, the poor bioavailability limits its application. Since the virus is parasitized inside the host cells, increasing the intracellular drug uptake can improve antiviral efficacy. Hence, we aimed to develop nanostructured lipid carriers (NLCs) to enhance the antiviral efficacy of IVM. The findings first revealed the capacity of IVM to inhibit the infectivity of PEDV by reducing viral replication with a certain direct inactivation effect. The as-prepared IVM-NLCs possessed hydrodynamic diameter of 153.5 nm with a zeta potential of -31.5 mV and high encapsulation efficiency (95.72%) and drug loading (11.17%). IVM interacted with lipids and was enveloped in lipid carriers with an amorphous state. Furthermore, its encapsulation in NLCs could enhance drug internalization. Meanwhile, IVM-NLCs inhibited PEDV proliferation by up to three orders of magnitude in terms of viral RNA copies, impeding the accumulation of reactive oxygen species and mitigating the mitochondrial dysfunction caused by PEDV infection. Moreover, IVM-NLCs markedly decreased the apoptosis rate of PEDV-induced Vero cells. Hence, IVM-NLCs showed superior inhibitory effect against PEDV compared to free IVM. Together, these results implied that NLCs is an efficient delivery system for IVM to improve its antiviral efficacy against PEDV via enhanced intracellular uptake.

2.
J Vet Sci ; 25(2): e30, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38568831

ABSTRACT

BACKGROUND: Biofilms, such as those from Staphylococcus epidermidis, are generally insensitive to traditional antimicrobial agents, making it difficult to inhibit their formation. Although quercetin has excellent antibiofilm effects, its clinical applications are limited by the lack of sustained and targeted release at the site of S. epidermidis infection. OBJECTIVES: Polyethylene glycol-quercetin nanoparticles (PQ-NPs)-loaded gelatin-N,O-carboxymethyl chitosan (N,O-CMCS) composite nanogels were prepared and assessed for the on-demand release potential for reducing S. epidermidis biofilm formation. METHODS: The formation mechanism, physicochemical characterization, and antibiofilm activity of PQ-nanogels against S. epidermidis were studied. RESULTS: Physicochemical characterization confirmed that PQ-nanogels had been prepared by the electrostatic interactions between gelatin and N,O-CMCS with sodium tripolyphosphate. The PQ-nanogels exhibited obvious pH and gelatinase-responsive to achieve on-demand release in the micro-environment (pH 5.5 and gelatinase) of S. epidermidis. In addition, PQ-nanogels had excellent antibiofilm activity, and the potential antibiofilm mechanism may enhance its antibiofilm activity by reducing its relative biofilm formation, surface hydrophobicity, exopolysaccharides production, and eDNA production. CONCLUSIONS: This study will guide the development of the dual responsiveness (pH and gelatinase) of nanogels to achieve on-demand release for reducing S. epidermidis biofilm formation.


Subject(s)
Chitosan , Nanoparticles , Animals , Staphylococcus epidermidis/genetics , Nanogels , Gelatin/pharmacology , Quercetin/pharmacology , Biofilms , Chitosan/pharmacology , Chitosan/chemistry , Gelatinases/pharmacology , Anti-Bacterial Agents/pharmacology
3.
Life Sci ; 339: 122414, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38216121

ABSTRACT

Contamination by pathogens, such as bacteria, can irritate a wound and prevent its healing, which may affect the physical fitness of the infected person. As such, the development of more novel nano-biomaterials able to cope with the inflammatory reaction to bacterial infection during the wound healing process to accelerate wound healing is required. Herein, a halofuginone­silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. HTPM&AgNPs-gel was characterized based on thermogravimetric analysis, differential scanning calorimetry, morphology, injectability, and rheological mechanics that reflected its exemplary nature. Moreover, HTPM&AgNPs-gel was further tested for its ability to facilitate healing of skin fibroblasts and exert antibacterial activity. Finally, HTPM&AgNPs-gel was tested for its capacity to accelerate general wound healing and treat bacterially induced wound damage. HTPM&AgNPs-gel appeared spherical under a transmission electron microscope and showed a grid structure under a scanning electron microscope. Additionally, HTPM&AgNPs-gel demonstrated excellent properties, including injectability, temperature-dependent swelling behavior, low loss at high temperatures, and appropriate rheological properties. Further, HTPM&AgNPs-gel was found to effectively promote healing of skin fibroblasts and inhibit the proliferation of Escherichia coli and Staphylococcus aureus. An evaluation of the wound healing efficacy demonstrated that HTPM&AgNPs-gel had a more pronounced ability to facilitate wound repair and antibacterial effects than HTPM-gel or AgNPs-gel alone, and exhibited ideal biocompatibility. Notably, HTPM&AgNPs-gel also inhibited inflammatory responses in the healing process. HTPM&AgNPs-gel exhibited antibacterial, anti-inflammatory, and scar repair features, which remarkably promoted wound healing. These findings indicated that HTPM&AgNPs-gel holds great clinical potential as a promising and valuable wound healing treatment.


Subject(s)
Metal Nanoparticles , Piperidines , Quinazolinones , Silver , Humans , Silver/pharmacology , Silver/chemistry , Staphylococcus aureus , Wound Healing , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Hydrogels/chemistry , Anti-Inflammatory Agents/pharmacology
4.
Biomed Pharmacother ; 170: 116062, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38150878

ABSTRACT

Canine mammary tumors (CMT) can severely compromise the life quality of the affected dogs through local recurrence, distant metastases and ultimately succumb to death. Recently, more attention has been given to the potential antimetastatic effect of maduramicin (MAD) on breast cancer. However, its poor aqueous solubility and toxicity to normal tissues limit its clinical application. Therefore, to address the drawbacks of MAD and enhance its anticancer and antimetastatic effects, MAD-loaded TPGS polymeric micelles (MAD-TPGS) were prepared by a thin-film hydration technique. The optimized MAD-TPGS exhibited excellent size distribution, stability and improved water solubility. Cellular uptake assays showed that TPGS polymer micelles could enhance drug internalization. Moreover, TPGS synergistically improved the cytotoxicity of MAD by targeting mitochondrial organelles, improving reactive oxygen species levels and reducing the mitochondrial transmembrane potential. More importantly, MAD-TPGS significantly impeded the metastasis of tumor cells. In vivo results further confirmed that, in addition to exhibiting excellent biocompatibility, MAD-TPGS exhibited greater antitumor efficacy than free MAD. Interestingly, MAD-TPGS displayed superior suppression of CMT metastasis via tail vein injection compared to oral administration, indicating its suitability for intravenous delivery. Overall, MAD-TPGS could be applied as a potential antimetastatic cancer agent for CMT.


Subject(s)
Antineoplastic Agents , Mammary Neoplasms, Animal , Dogs , Animals , Micelles , Polyethylene Glycols , Antineoplastic Agents/pharmacology , Polymers , Mammary Neoplasms, Animal/drug therapy , Vitamin E , Drug Carriers , Cell Line, Tumor
5.
Food Chem Toxicol ; 178: 113922, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37394175

ABSTRACT

Methuosis, a novel cell death phenotype, is characterized by accumulation of cytoplasmic vacuolization upon external stimulus. Methuosis plays a critical role in maduramicin-induced cardiotoxicity despite the underlying mechanism is largely unknown. Herein, we aimed to investigate the origin and intracellular trafficking of cytoplasmic vacuoles, as well as the molecular mechanism of methuosis caused by maduramicin (1 µg/mL) in myocardial cells. H9c2 cells and broiler chicken were used and were exposed to maduramicin at doses of 1 µg/mL in vitro and 5 ppm-30 ppm in vivo. Morphological observation and dextran-Alexa Fluor 488 tracer experiment showed that endosomal compartments swelling and excessive macropinocytosis contributed to madurdamcin-induced methuosis. Cell counting kit-8 assay and morphology indicated pharmacological inhibition of macropinocytosis largely prevent H9c2 cells from maduramicin-triggered methuosis. In addition, late endosomal marker Rab7 and lysosomal associated membrane protein 1 (LAMP1) increased in a time-dependent manner after maduramicin treatment, and the recycling endosome marker Rab11 and ADP-ribosylation factor 6 (Arf6) were decreased by maduramicin. Vacuolar-H+-ATPase (V-ATPase) was activated by maduramicin, and pharmacological inhibition and genetic knockdown V0 subunit of V-ATPase restore endosomal-lysosomal trafficking and prevent H9c2 cells methuosis. Animal experiment showed that severe cardiac injury included the increase of creatine kinase (CK) and creatine kinase-MB (CK-MB), and vacuolar degeneration resembled methuosis in vivo after maduramicin treatment. Taken together, these findings demonstrate that targeting the inhibition of V-ATPase V0 subunit will prevent myocardial cells methuosis by restoring endosomal-lysosomal trafficking.


Subject(s)
Chickens , Vacuolar Proton-Translocating ATPases , Animals , Chickens/metabolism , Endosomes/genetics , Endosomes/metabolism , Lysosomes/metabolism , Vacuolar Proton-Translocating ATPases/metabolism
6.
Pharmaceutics ; 15(7)2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37513969

ABSTRACT

Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases.

7.
Front Endocrinol (Lausanne) ; 14: 1195618, 2023.
Article in English | MEDLINE | ID: mdl-37347106

ABSTRACT

Testicular Leydig cells (LCs) are the primary known source of testosterone, which is necessary for maintaining spermatogenesis and male fertility. However, the isolation, identification, and functional analysis of testosterone in duck LCs are still ambiguous. The aim of the present study was to establish a feasible method for isolating highly purified primary duck LCs. The highly purified primary duck LCs were isolated from the fresh testes of 2-month-old ducks via the digestion of collagenase IV and Percoll density gradient centrifugation; hematoxylin and eosin (H&E), immunohistochemistry (IHC) staining, ELISA, and radioimmunoassay were performed. Results revealed that the LCs were prominently noticeable in the testicular interstitium of 2-month-old ducks as compared to 6-month-old and 1-year-old ducks. Furthermore, IHC demonstrated that the cultured LCs occupied 90% area of the petri dish and highly expressed 3ß-HSD 24 h after culture (hac) as compared to 48 and 72 hac. Additionally, ELISA and radioimmunoassay indicate that the testosterone level in cellular supernatant was highly expressed in 24 and 48 hac, whereas the testosterone level gradually decreased in 72 and 96 hac, indicating the primary duck LCs secrete testosterone at an early stage. Based on the above results, the present study has effectively developed a technique for isolating highly purified primary duck LCs and identified its biological function in synthesizing testosterone.


Subject(s)
Ducks , Leydig Cells , Animals , Male , Testosterone , Testis , Cells, Cultured
8.
Colloids Surf B Biointerfaces ; 226: 113307, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37068446

ABSTRACT

Salmonella Typhimurium (ST) can hide inside cells, avoid antibiotic therapy and being killed by host's immune system to cause persistent infection in humans and animals. Metal nanoparticles are regarded as an alternative to overcome the above limitations, silver nanoparticles especially have been applied in combating drug-resistant bacteria. However, the therapeutic effects of silver nanoparticles against intracellular infection and their impacts on host immunity remain an area of further investigation. In this work, we synthesized Ganoderma extract-capped silver nanoparticles (Ag@Ge) and explored the therapeutic potential and immune adjuvant effects of Ag@Ge against intracellular ST. Firstly, Ag@Ge had a small particle size of 35.52±7.46 nm, good stability, and biocompatibility. Then, Ag@Ge effectively entered RAW 264.7 cells, suppressed intracellular ST infection. Furthermore, Ag@Ge activated mouse dendritic cells (DCs) in vitro, evidenced by increased phenotypic markers (CD80/CD86/CD40/major compatibility complex II (MHCII)) expression and cytokine and chemokine (interleukin-6 (IL-6), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), chemokine (C-C motif) ligand 2 (CCL-2), and chemokine (C-C motif) receptor-7 (CCR-7)) transcription. More notably, the combination of Ag@Ge with inactivated ST recruited intestinal DCs to mitigate ST infection in mice, evidenced by decreased body weight loss and bacterial loads in the tissues (liver, jejunum, and colon), and improved platelets count. The above findings indicate that Ag@Ge has the potential as an alternative nano-antibiotic against intracellular ST infection.


Subject(s)
Metal Nanoparticles , Salmonella typhimurium , Humans , Animals , Mice , Silver/pharmacology , Silver/metabolism , Dendritic Cells/metabolism , Chemokines/metabolism , Chemokines/pharmacology
9.
Front Pharmacol ; 13: 1051694, 2022.
Article in English | MEDLINE | ID: mdl-36532753

ABSTRACT

Chloroquine was once thought to be a promising treatment for COVID-19 but it quickly failed due to its inefficiency and association with increased mortality. Further, comorbidities such as hypertension may have contributed this failure. The safety and toxicity of chloroquine at doses required for treating SARS-CoV-2 infection in hypertensive patients remain unknown. Herein, to investigate these effects, we performed a safety evaluation of chloroquine at the approved dose (63 mg/kg) and at a high dose (126 mg/kg) in hypertensive rats. We found that chloroquine increased the mortality of hypertensive rats to 18.2% and 100%, respectively, after 7 days. During the chloroquine exposure period, the bodyweight, feed, and water consumption of hypertensive rats were decreased significantly. In addition, we show that chloroquine induces prolongation of QTc interval, elevation of LDH and CK, and histopathological damage of the myocardium in hypertensive rats. Ocular toxicity was observed in hypertensive rats in the form of hemorrhage in the eyes and retinal damage. Furthermore, we also observed intestinal toxicity in hypertensive rats, which presented as thinning intestinal walls with hemorrhagic contents, and histopathological changes of the jejunum. Hepatotoxicity was also evidenced by elevated ALT, and vacuolization of hepatocytes was also observed. Nephrotoxicity was observed only in high dose chloroquine-treated hypertensive rats, presenting as alterations of urinalysis and renal function. Immune alterations were also found in high-dose chloroquine-treated hypertensive rats with elevation of serum IL-10, IL-1ß and GRO, and moderate damage to the spleen. In summary, this study partially explains the reason for the failure of chloroquine as a COVID-19 therapy, and underlines the importance of safety evaluation and medical supervision of chloroquine to avoid patient harm, especially to those with hypertension.

10.
Int J Pharm ; 625: 122091, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35964826

ABSTRACT

Triple-negative breast cancer (TNBC) is featured by aggression and metastasis and remains an unmet medical challenge due to high death rate. We aimed to repurpose maduramicin (MAD) as an effective drug against TNBC, and develop a nanoemulsion system to enhance anticancer efficacy of MAD. MDA-MB-231 and 4 T1 cells were used as in vitro model, and cell viability was determined by performing cell counting kit-8 and a colony-formation assay. Furthermore, MAD loaded nanoemulsion (MAD-NEs) was manufactured and characterized by a series of tests. The anticancer and anti-metastasis mechanism of MAD-NEs were assessed by performing cell cycle, apoptosis, wound-healing, transwell assay and Western blotting assays. Herein, MAD was firstly demonstrated to be an effective agent to suppress growth of TNBC cells. Subsequently, the optimized MAD-NEs were shown to have stability and high encapsulation efficiency, and could arrested cells in G0/G1 phase and induced apoptosis in TNBC cells. More importantly, MAD-NEs significantly impeded the metastasis of tumor cells, which was further demonstrated by the significant altered expression of epithelial-mesenchymal transition and extracellular matrix markers in vitro and in vivo. Moreover, compared to MAD, MAD-NEs exhibited higher efficacy in shrinking breast tumor size and repressing liver and lung metastasis in vivo, and showed excellent biocompatibility in tumor-bearing mice. The successfully prepared MAD-NEs are expected to be harnessed to suppress tumor growth, invasion and metastasis in the battle against malignant TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Animals , Cell Line, Tumor , Cell Movement , Cell Proliferation , Drug Repositioning , Humans , Lactones , Mice , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
11.
Pharmaceutics ; 14(7)2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35890226

ABSTRACT

Maduramicin ammonium (MAD) is one of the most frequently used anticoccidial agents in broiler chickens. However, the high toxicity and low solubility of MAD limit its clinical application. In this study, MAD-loaded nanostructured lipid carriers (MAD-NLCs) were prepared to overcome the defects of MAD by using highly soluble nanostructured lipid carriers (NLCs). The formulation was optimized via a three-level, three-factor Box-Behnken response surface method. Then, the optimal MAD-NLCs were evaluated according to their hydrodynamic diameter (HD), zeta potential (ZP), crystal structure, encapsulation efficiency (EE), drug loading (DL), in vitro release, and anticoccidial effect. The optimal MAD-NLCs had an HD of 153.6 ± 3.044 nm and a ZP of -41.4 ± 1.10 mV. The X-ray diffraction and Fourier-transform infrared spectroscopy results indicated that the MAD was encapsulated in the NLCs in an amorphous state. The EE and DL were 90.49 ± 1.05% and 2.34 ± 0.04%, respectively, which indicated that the MAD was efficiently encapsulated in the NLCs. In the in vitro study, the MAD-NLCs demonstrated a slow and sustained drug release behavior. Notably, MAD-NLCs had an excellent anticoccidial effect against Eimeria tenella in broiler chickens. In summary, MAD-NLCs have huge potential to form a new preparation administered via drinking water with a powerful anticoccidial effect.

12.
Int J Nanomedicine ; 17: 2475-2491, 2022.
Article in English | MEDLINE | ID: mdl-35668999

ABSTRACT

Background: Halofuginone (HF)-loaded TPGS polymeric micelles (HTPM) were successfully fabricated using the thin-film hydration technique. HTPM via intravenous injection have been demonstrated to exert an excellent anticancer effect against triple-negative breast cancer (TNBC) cells and subcutaneous xenografts. In the present study, we further explored the potential treatment effect and mechanism of orally administered HTPM alone and in combination with surgical therapy on TNBC in subcutaneous and orthotopic mouse models. Methods: Herein, the stability and in vitro release behavior of HTPM were first evaluated in the simulated gastrointestinal fluids. Caco-2 cell monolayers were then used to investigate the absorption and transport patterns of HF with/without encapsulation in TPGS polymeric micelles. Subsequently, the therapeutic effect of orally administered HTPM was checked on subcutaneous xenografts of TNBC in nude mice. Ultimately, orally administered HTPM, combined with surgical therapy, were utilized to treat orthotopic TNBC in nude mice. Results: Our data confirmed that HTPM exhibited good stability and sustained release in the simulated gastrointestinal fluids. HF was authenticated to be a substrate of P-glycoprotein (P-gp), and its permeability across Caco-2 cell monolayers was markedly enhanced via heightening intracellular absorption and inhibiting P-gp efflux due to encapsulation in TPGS polymeric micelles. Compared with HF alone, HTPM showed stronger tumor-suppressing effects in subcutaneous xenografts of MDA-MB-231 cells when orally administered. Moreover, compared with HTPM or surgical therapy alone, peroral HTPM combined with partial surgical excision synergistically retarded the growth of orthotopic TNBC. Fundamentally, HTPM orally administered at the therapeutic dose did not cause any pathological injury, while HF alone led to weight loss and jejunal bleeding in the investigated mice. Conclusion: Taken together, HTPM could be applied as a potential anticancer agent for TNBC by oral administration.


Subject(s)
Micelles , Triple Negative Breast Neoplasms , Animals , Caco-2 Cells , Cell Line, Tumor , Humans , Mice , Mice, Nude , Piperidines , Polymers , Quinazolinones , Triple Negative Breast Neoplasms/drug therapy , Vitamin E
13.
Molecules ; 27(10)2022 May 10.
Article in English | MEDLINE | ID: mdl-35630537

ABSTRACT

Moxidectin (MXD) is an antiparasitic drug used extensively in veterinary clinics. In this study, to develop a new formulation of MXD, a thermosensitive gel of MXD (MXD-TG) was prepared based on poloxamer 407/188. Furthermore, the gelation temperature, the stability, in vitro release kinetics and in vivo pharmacokinetics of MXD-TG were evaluated. The results showed that the gelation temperature was approximately 27 °C. MXD-TG was physically stable and can be released continuously for more than 96 h in vitro. The Korsmeyer−Peppas model provided the best fit to the release kinetics, and the release mechanism followed a diffusive erosion style. MXD-TG was released persistently for over 70 days in sheep. Part of pharmacokinetic parameters had a difference in female and male sheep (p < 0.05). It was concluded that MXD-TG had a good stability, and its release followed the characteristics of a diffusive erosion style in vitro and a sustained release pattern in vivo.


Subject(s)
Macrolides , Poloxamer , Animals , Antiparasitic Agents , Female , Macrolides/pharmacokinetics , Male , Sheep , Temperature
14.
Chem Biol Interact ; 361: 109954, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35469826

ABSTRACT

Patients with underlying diseases and coronavirus disease 2019 (COVID-19) are at increased risk of death. Using the recommended anti-COVID-19 drug, chloroquine phosphate (CQ), to treat patients with severe cases and type 2 diabetes (T2D) could potentially cause harm. We aimed to understand the safety of CQ in patients with T2D by administrating the recommended dose (63 mg/kg twice daily for 7 days) and a high dose (126 mg/kg twice daily for 7 days) of CQ in T2D rats. We found that CQ increased the total mortality of the T2D rats from 27.3% to 72.7% in the recommended and high-dose groups during the whole period. CQ also induced hematotoxicity of T2D rats in the high-dose group; the hepatic enzymes in T2D rats were significantly elevated. CQ also changed the electrocardiograms, prolonged the QTc intervals, and produced urinary leukocytes and proteins in the T2D rats. Histopathological observations revealed that CQ caused severe damage to the rats' heart, jejunum, liver, kidneys, spleen, and retinas. Furthermore, CQ significantly decreased the serum IL-1ß and IL-6 levels. In conclusion, the CQ dosage and regimen used to treat COVID-19 induced adverse effects in diabetic rats, suggesting the need to reevaluate the effective dose of CQ in humans.


Subject(s)
COVID-19 Drug Treatment , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Animals , Chloroquine/toxicity , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Type 2/chemically induced , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Humans , Hydroxychloroquine/adverse effects , Rats , SARS-CoV-2
15.
Toxins (Basel) ; 13(8)2021 07 22.
Article in English | MEDLINE | ID: mdl-34437383

ABSTRACT

Deoxynivalenol (DON), also known as vomitoxin, is a mycotoxin that can cause antifeeding and vomiting in animals. However, the mechanism of DON inducing anorexia is complicated. Studies have shown that intestinal hormones play a significant part in the anorexia caused by DON. We adopted the "modeling of acute antifeeding in mice" as the basic experimental model, and used two methods of gavage and intraperitoneal injection to explore the effect of intestinal hormones on the antifeedant response induced by DON in mice. We found that 1 and 2.5 mg/kg·bw of DON can acutely induce anorexia and increase the plasma intestinal hormones CCK, PYY, GIP, and GLP-1 in mice within 3 h. Direct injection of exogenous intestinal hormones CCK, PYY, GIP, and GLP-1 can trigger anorexia behavior in mice. Furthermore, the PYY receptor antagonist JNJ-31020028, GLP-1 receptor antagonist Exendin(9-39), CCK receptor antagonist Proglumide, GIP receptor antagonist GIP(3-30)NH2 attenuated both intestinal hormone and DON-induced anorectic responses. These results indicate that intestinal hormones play a critical role in the anorexia response induced by DON.


Subject(s)
Anorexia/chemically induced , Gastrointestinal Hormones/blood , Trichothecenes/toxicity , Animals , Anorexia/drug therapy , Anorexia/metabolism , Benzamides/therapeutic use , Eating/drug effects , Feeding Behavior/drug effects , Female , Gastric Inhibitory Polypeptide/therapeutic use , Mice , Peptide Fragments/therapeutic use , Piperazines/therapeutic use , Proglumide/therapeutic use , Receptors, Gastrointestinal Hormone/antagonists & inhibitors
16.
Int J Biol Macromol ; 188: 855-862, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34411614

ABSTRACT

As immune adjuvants assisting vaccines, nanoparticle delivery systems have been widely exploited. Squalene, the major ingredient of approved adjuvant MF59, has great potential in activating immune responses. In the current study, model antigen ovalbumin (OVA) was encapsulated into squalene-based nanostructured lipid carriers (NLCs), and the chitosan, a cationic polysaccharide, was used for modifying nanoparticles to develop a functionalized and cationic nanoparticle delivery system (OVA-csNLCs). Firstly, the optimal formulation of csNLCs was successfully screened out, and had hydrodynamic diameter of 235.80 ± 5.99 nm and zeta potential of 34.90 ± 6.95 mV. Then, the generated OVA-csNLCs had no significant difference in hydrodynamic diameter and exhibited lower zeta potential of 19.03 ± 0.31 mV and high encapsulation efficiency of 83.4%. Sucrose (10%, w/w) was selected as optimal lyoprotectant, exhibiting good stability of OVA-csNLCs in the form of freeze-dried powder. More importantly, the OVA-csNLCs effectively promoted OVA antigen uptake by macrophage, significantly enhanced the level of OVA-specific IgG, and induced a Th2-based immune response in vivo. Furthermore, mice immunization experiment demonstrated that OVA-csNLCs had well biocompatibility and facilitated spleen lymphocytes proliferation. Above findings indicate that chitosan modified squalene nanostructured lipid carriers show promise as antigen delivery system and an open adjuvant platform.


Subject(s)
Chitosan/chemistry , Drug Carriers/chemistry , Freeze Drying , Lipids/chemistry , Nanostructures/chemistry , Ovalbumin/immunology , Squalene/chemistry , Vaccines/immunology , Animals , Antibodies/blood , Antibody Specificity , Cations , Cell Proliferation , Chemical Phenomena , Drug Compounding , Hydrodynamics , Immunization , Interferon-gamma/metabolism , Interleukin-4/metabolism , Mice , Nanostructures/ultrastructure , RAW 264.7 Cells , Spleen/cytology , Sucrose
17.
Toxins (Basel) ; 13(6)2021 06 13.
Article in English | MEDLINE | ID: mdl-34199278

ABSTRACT

A host's immune system can be invaded by mycotoxin deoxynivalenol (DON) poisoning and porcine circovirus type 2 (PCV2) infections, which affect the host's natural immune function. Pro-inflammatory cytokines, IL-1ß and IL-6, are important regulators in the process of natural immune response, which participate in inflammatory response and enhance immune-mediated tissue damage. Preliminary studies have shown that DON promotes PCV2 infection by activating the MAPK signaling pathway. Here, we explored whether the mRNA expression of IL-1ß and IL-6, induced by the combination of DON and PCV2, would depend on the MAPK signaling pathway. Specific pharmacological antagonists U0126, SP600125 and SB203580, were used to inhibit the activities of ERK, JNK and p38 in the MAPK signaling pathway, respectively. Then, the mRNA expression of IL-1ß and IL-6 in PK-15 cells was detected to explore the effect of the MAPK signaling pathway on IL-1ß and IL-6 mRNA induced by DON and PCV2. The results showed that PK-15 cells treated with DON or PCV2 induced the mRNA expression of IL-1ß and IL-6 in a time- and dose-dependent manner. The combination of DON and PCV2 has an additive effect on inducing the mRNA expression of IL-1ß and IL-6. Additionally, both DON and PCV2 could induce the mRNA expression of IL-1ß and IL-6 via the ERK and the p38 MAPK signal pathways, while PCV2 could induce it via the JNK signal pathway. Taken together, our results suggest that MAPKs play a contributory role in IL-1ß and IL-6 mRNA expression when induced by both DON and PCV2.


Subject(s)
Circovirus , Interleukin-1beta/genetics , Interleukin-6/genetics , MAP Kinase Signaling System/drug effects , Trichothecenes/toxicity , Animals , Cell Line , Circoviridae Infections/genetics , Circoviridae Infections/metabolism , RNA, Messenger , Swine
18.
J Appl Toxicol ; 41(12): 1937-1951, 2021 12.
Article in English | MEDLINE | ID: mdl-33890316

ABSTRACT

Maduramicin frequently induces severe cardiotoxicity in target and nontarget animals in clinic. Apoptotic and non-apoptotic cell death mediate its cardiotoxicity; however, the underlying non-apoptotic cell death induced by maduramicin remains unclear. In current study, a recently described non-apoptotic cell death "methuosis" caused by maduramicin was defined in mammalian cells. Rat myocardial cell H9c2 was used as an in vitro model, showing excessively cytoplasmic vacuolization upon maduramicin (0.0625-5 µg/mL) exposure for 24 h. Maduramicin-induced reversible cytoplasmic vacuolization of H9c2 cells in a time- and concentration-dependent manner. The vacuoles induced by maduramicin were phase lucent with single membrane and were not derived from the swelling of organelles such as mitochondria, endoplasmic reticulum, lysosome, and Golgi apparatus. Furthermore, maduramicin-induced cytoplasmic vacuoles are generated from micropinocytosis, which was demonstrated by internalization of extracellular fluid-phase marker Dextran-Alexa Fluor 488 into H9c2 cells. Intriguingly, these cytoplasmic vacuoles acquired some characteristics of late endosomes and lysosomes rather than early endosomes and autophagosomes. Vacuolar H+ -ATPase inhibitor bafilomycin A1 efficiently prevented the generation of cytoplasmic vacuoles and decreased the cytotoxicity of H9c2 cells triggered by maduramicin. Mechanism studying indicated that maduramicin activated H-Ras-Rac1 signaling pathway at both mRNA and protein levels. However, the pharmacological inhibition and siRNA knockdown of Rac1 rescued maduramicin-induced cytotoxicity of H9c2 cells but did not alleviate cytoplasmic vacuolization. Based on these findings, maduramicin induces methuosis in H9c2 cells via Rac-1 signaling-independent seriously cytoplasmic vacuolization.


Subject(s)
Anti-Bacterial Agents/toxicity , Cardiotoxicity/physiopathology , Lactones/toxicity , Animals , Cardiotoxicity/etiology , Cardiotoxicity/pathology , Cell Line , Rats , Signal Transduction
19.
Int J Nanomedicine ; 16: 1587-1600, 2021.
Article in English | MEDLINE | ID: mdl-33664573

ABSTRACT

BACKGROUND: Halofuginone hydrobromide (HF) is a synthetic analogue of the naturally occurring quinazolinone alkaloid febrifugine, which has potential therapeutic effects against breast cancer, however, its poor water solubility greatly limits its pharmaceutical application. D-α-tocopherol polyethylene glycol 1000 succinate (TPGS) is a water-soluble derivative of vitamin E, which can self-assemble to form polymeric micelles (PMs) for encapsulating insoluble anti-tumor drugs, thereby effectively enhancing their anti-cancer effects. METHODS: HF-loaded TPGS PMs (HTPMs) were manufactured using a thin-film hydration technique, followed by a series of characterizations, including the hydrodynamic diameter (HD), zeta potential (ZP), stability, drug loading (DL), encapsulation efficiency (EE), and in vitro drug release. The anti-cancer effects and potential mechanism of HTPMs were investigated in the breast cell lines MDA-MB-231 and MCF-7, and normal breast epithelial cell line Eph-ev. The breast cancer-bearing BALB/c nude mouse model was successfully established by subcutaneous injection of MDA-MB-231 cells and used to evaluate the in vivo therapeutic effect and safety of the HTPMs. RESULTS: The optimized HTPMs had an HD of 17.8±0.5 nm and ZP of 14.40±0.1 mV. These PMs exhibited DL of 12.94 ± 0.46% and EE of 90.6 ± 0.85%, along with excellent storage stability, dilution tolerance and sustained drug release in pH-dependent manner within 24 h compared to free HF. Additionally, the HTPMs had stronger inhibitory effects than free HF and paclitaxel against MDA-MB-231 triple-negative breast cancer cells, and little toxicity in normal breast epithelial Eph-ev cells. The HTPMs induced cell cycle arrest and apoptosis of MDA-MB-231 by disrupting the mitochondrial membrane potential and enhancing reactive oxygen species formation. Evaluation of in vivo anti-tumor efficacy demonstrated that HTPMs exerted a stronger tumor inhibition rate (68.17%) than free HF, and exhibited excellent biocompatibility. CONCLUSION: The findings from this study indicate that HTPMs holds great clinical potential for treating triple-negative breast cancer.


Subject(s)
Drug Compounding , Micelles , Piperidines/therapeutic use , Polymers/chemistry , Quinazolinones/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Vitamin E/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Female , Humans , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred BALB C , Mice, Nude , Paclitaxel/therapeutic use , Piperidines/pharmacology , Quinazolinones/pharmacology , Reactive Oxygen Species/metabolism , Treatment Outcome , Triple Negative Breast Neoplasms/ultrastructure
20.
Pharmaceutics ; 13(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33669090

ABSTRACT

Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic drugs for oral administration. In this study, an orthogonal experimental design was applied for optimizing TMS-loaded NLCs (TMS-NLCs). The ratios of emulsifier to mixed lipids, stearic acid to oleic acid, drugs to mixed lipids, and cold water to hot emulsion were selected as the independent variables, while the hydrodynamic diameter (HD), drug loading (DL), and entrapment efficiency (EE) were the chosen responses. The optimized TMS-NLCs had a small HD, high DL, and EE of 276.85 ± 2.62 nm, 9.14 ± 0.04%, and 92.92 ± 0.42%, respectively. In addition, a low polydispersity index (0.231 ± 0.001) and high negative zeta potential (-31.10 ± 0.00 mV) indicated the excellent stability, which was further demonstrated by uniformly dispersed spherical nanoparticles under transmission electron microscopy. TMS-NLCs exhibited a slow and sustained release behavior in both simulated gastric juice and intestinal fluid. Furthermore, MDCK-chAbcg2/Abcb1 cell monolayers were successfully established to evaluate their absorption efficiency and potential mechanism. The results of biodirectional transport showed that TMS-NLCs could enhance the cellular uptake and inhibit the efflux function of drug transporters against TMS in MDCK-chAbcg2/Abcb1 cells. Moreover, the data revealed that TMS-NLCs could enter the cells mainly via the caveolae/lipid raft-mediated endocytosis and partially via macropinocytosis. Furthermore, TMS-NLCs showed the same antibacterial activity as free TMS. Taken together, the optimized NLCs were the promising oral delivery carrier for overcoming oral administration obstacle of TMS.

SELECTION OF CITATIONS
SEARCH DETAIL
...