Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 33(17): 9867-9876, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37415071

ABSTRACT

Menstrually-related migraine (MM) is a primary migraine in women of reproductive age. The underlying neural mechanism of MM was still unclear. In this study, we aimed to reveal the case-control differences in network integration and segregation for the morphometric similarity network of MM. Thirty-six patients with MM and 29 healthy females were recruited and underwent MRI scanning. The morphometric features were extracted in each region to construct the single-subject interareal cortical connection using morphometric similarity. The network topology characteristics, in terms of integration and segregation, were analyzed. Our results revealed that, in the absence of morphology differences, disrupted cortical network integration was found in MM patients compared to controls. The patients with MM showed a decreased global efficiency and increased characteristic path length compared to healthy controls. Regional efficiency analysis revealed the decreased efficiency in the left precentral gyrus and bilateral superior temporal gyrus contributed to the decreased network integration. The increased nodal degree centrality in the right pars triangularis was positively associated with the attack frequency in MM. Our results suggested MM would reorganize the morphology in the pain-related brain regions and reduce the parallel information processing capacity of the brain.


Subject(s)
Brain , Migraine Disorders , Humans , Female , Brain/diagnostic imaging , Migraine Disorders/diagnostic imaging , Magnetic Resonance Imaging/methods , Prefrontal Cortex , Pain
2.
Medicine (Baltimore) ; 96(14): e6534, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28383419

ABSTRACT

Demyelination and axonal degeneration caused by multiple sclerosis (MS) exist in the white matter and not only in the lesion area. Magnetic resonance spectroscopy (MRS) could provide a unique insight into metabolic changes in the normal appearing white matter (NAWM). To evaluate the subtle axonal degeneration and delineate the spatial distribution of metabolite abnormalities in the NAWM in patients with MS. A total of 17 clinically definite relapsing-remitting MS (RRMS) patients and 21 healthy controls were enrolled in this study. 2D 1H magnetic resonance spectroscopic imaging (MRSI) performed at 3 Tesla was used to measure metabolite concentrations in the frontal-parietal-occipital NAWM. Ratios of N-acetyl-aspartate (NAA) and choline (Cho) to creatine (Cr) and Cho to NAA were calculated in each voxel. MS patients showed decreased NAA/Cr and increased Cho/NAA ratios in the NAWM compared to healthy controls. In the parietal NAWM, the extent of NAA/Cr decrease was significantly higher than that in the frontal and parietal-occipital NAWM. Decreased NAA in the NAWM would provide useful metabolic information for evaluation of disease progression in MS. The high extent of NAA decrease in the parietal NAWM helps improve the accuracy of the prediction.


Subject(s)
Aspartic Acid/analogs & derivatives , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Multiple Sclerosis, Relapsing-Remitting/metabolism , Proton Magnetic Resonance Spectroscopy , Adult , Aspartic Acid/metabolism , Female , Humans , Male , Middle Aged , Quality Improvement
3.
Exp Ther Med ; 5(4): 1244-1246, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23596496

ABSTRACT

The present study aimed to investigate the clinical efficacy of transcranial ultrasound as an adjuvant therapy in combination with small doses of urokinase (UK) for the treatment of progressive cerebral infarction. Sixty-one eligible patients with progressive cerebral infarction were successively and randomly assigned into one of the following groups; 30 patients to the treatment group (transcranial ultrasound + small doses of UK) and 31 patients to the control group (single small doses of UK). Based on conventional therapy, patients in the treatment group received transcranial ultrasound. The neural function deficit scale and curative effect scores of the two groups were recorded before treatment and on the 7th and 14th days after treatment. No differences in the neural function deficit scale between the two groups was observed before treatment, however, on the 7th and 14th days after treatment, a significant decrease was evident in the treatment group (P<0.01). The overall response rate was 100% in the treatment group and 74.2% in the control group, with a significant difference (P<0.01). Transcranial ultrasound is able to contribute to the thrombolytic effects of UK and prevent the progression of thrombi, subsequently aiding the recovery of neural functions.

SELECTION OF CITATIONS
SEARCH DETAIL
...