Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect Public Health ; 17 Suppl 1: 76-81, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37291027

ABSTRACT

Although all walks of life are paying less attention to COVID-19, the spread of COVID-19 has never stopped. As an infectious disease, its transmission speed is closely related to the atmosphere environment, particularly the temperature (T) and PM2.5 concentrations. However, How T and PM2.5 concentrations are related to the spread of SARS-CoV-2 and how much their cumulative lag effect differ across cities is unclear. To identify the characteristics of cumulative lag effects of environmental exposure under city differences, this study used a generalized additive model to investigate the associations between T/PM2.5 concentrations and the daily number of new confirmed COVID-19 cases (NNCC) during the outbreak period in the second half of 2021 in Shaoxing, Shijiazhuang, and Dalian. The results showed that except for PM2.5 concentrations in Shaoxing, the NNCC in the three cities generally increased with the unit increase of T and PM2.5 concentrations. In addition, the cumulative lag effects of T/PM2.5 concentrations on NNCC in the three cities reached a peak at lag 26/25, lag 10/26, and lag 18/13 days, respectively, indicating that the response of NNCC to T and PM2.5 concentrations varies among different regions. Therefore, combining local meteorological and air quality conditions to adopt responsive measures is an important way to prevent and control the spread of SARS-CoV-2.


Subject(s)
Air Pollutants , COVID-19 , Humans , COVID-19/epidemiology , Air Pollutants/adverse effects , Air Pollutants/analysis , Particulate Matter/analysis , SARS-CoV-2 , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Cities/epidemiology , China/epidemiology
2.
Plant Cell Rep ; 27(3): 499-507, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18026732

ABSTRACT

Strawberry (Fragaria spp.) is a kind of herbaceous perennial plant that propagates vegetatively. The conserved domains of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy groups of LTR retrotransposons were amplified from the cultivated strawberry (Fragaria x ananassa Duch.). Sequence analysis of clones demonstrated that 5 of 19 Ty1-copia group unique sequences and 2 of 10 Ty3-gypsy unique sequences in F. x ananassa genome possessed either stop codon or frameshift. Ty1-copia group sequences are highly heterogeneous (divergence ranged from 1 to 69.8%), but the Ty3-gypsy group sequences are less (divergence ranged from 1 to 10%). Southern dot blot hybridization result suggested that both of the LTR retrotransposons are present in the genome of cultivated strawberry with high copy number (Ty1-copia group 2,875 Ty3-gypsy group 348). RT-PCR amplification from total RNA, which was extracted from leaves of micropropagated strawberry plants, did not yield either of the RT fragments. This is the first report on the presence of RT sequences of Ty1-copia and Ty3-gypsy group retrotransposons in F. x ananassa genome.


Subject(s)
Fragaria/genetics , Retroelements/genetics , Amino Acid Sequence , Blotting, Southern , Fragaria/classification , Genome, Plant/genetics , Molecular Sequence Data , Phylogeny , RNA-Directed DNA Polymerase/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...