Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 839
Filter
1.
J Orthop Translat ; 46: 103-115, 2024 May.
Article in English | MEDLINE | ID: mdl-38841339

ABSTRACT

Background: Reactive oxygen species (ROS), predominantly generated by mitochondria, play a crucial role in the pathogenesis of intervertebral disc degeneration (IVDD). Reduction of ROS levels may be an effective strategy to delay IVDD. In this study, we assessed whether umbilical cord mesenchymal stem cell-exosomes (UCMSC-exos) can be used to treat IVDD by suppressing ROS production caused by mitochondrial dysfunction. Materials and methods: Human UCMSC-exos were isolated and identified. Nucleus pulposus cells (NPCs) were stimulated with H2O2 in the presence or absence of exosomes. Then, 4D label free quantitative (4D-LFQ) proteomics were used to analyze the differentially expressed (DE) proteins. Mitochondrial membrane potential (MMP), mitochondrial ROS and protein levels were determined via immunofluorescence staining, flow cytometry and western blotting respectively. Additionally, high-throughput sequencing was performed to identify the DE miRNAs in NPCs. Finally, therapeutic effects of UCMSC-exos were investigated in a puncture-induced IVDD rat model. Degenerative grades of rat IVDs were assessed using magnetic resonance imaging and histochemical staining. Results: UCMSC-exos effectively improved the viability of NPCs and restored the expression of the extracellular matrix (ECM) proteins, collagen type II alpha-1 (COL2A1) and matrix metalloproteinase-13 induced by H2O2. Additionally, UCMSC-exos not only reduced the total intracellular ROS and mitochondrial superoxide levels, but also increased MMP in pathological NPCs. 4D-LFQ proteomics and western blotting further revealed that UCMSC-exos up-regulated the levels of the mitochondrial protein, mitochondrial transcription factor A (TFAM), in H2O2-induced NPCs. High-throughput sequencing and qRT-PCR uncovered that UCMSC-exos down-regulated the levels of miR-194-5p, a potential negative regulator of TFAM, induced by H2O2. Finally, in vivo results showed that UCMSC-exos injection improved the histopathological structure and enhanced the expression levels of COL2A1 and TFAM in the rat IVDD model. Conclusions: Our findings suggest that UCMSC-exos promote ECM synthesis, relieve mitochondrial oxidative stress, and attenuate mitochondrial dysfunction in vitro and in vivo, thereby effectively treating IVDD. The translational potential of this article: This study provides solid experimental data support for the therapeutic effects of UCMSC-exos on IVDD, suggesting that UCMSC-exos will be a promising nanotherapy for IVDD.

2.
Neural Regen Res ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38845217

ABSTRACT

ABSTRACT: N6-methyladenosine (m6A), the most prevalent and conserved RNA modification in eukaryotic cells, profoundly influences virtually all aspects of mRNA metabolism. mRNA plays crucial roles in neural stem cell genesis and neural regeneration, where it is highly concentrated and actively involved in these processes. Changes in m6A modification levels and the expression levels of related enzymatic proteins can lead to neurological dysfunction and contribute to the development of neurological diseases. Furthermore, the proliferation and differentiation of neural stem cells, as well as nerve regeneration, are intimately linked to memory function and neurodegenerative diseases. This paper presents a comprehensive review of the roles of m6A in neural stem cell proliferation, differentiation, and self-renewal, as well as its implications in memory and neurodegenerative diseases. m6A has demonstrated divergent effects on the proliferation and differentiation of neural stem cells. These observed contradictions may arise from the time-specific nature of m6A and its differential impact on neural stem cells across various stages of development. Similarly, the diverse effects of m6A on distinct types of memory could be attributed to the involvement of specific brain regions in memory formation and recall. Inconsistencies in m6A levels across different models of neurodegenerative disease, particularly Alzheimer's disease and Parkinson's disease, suggest that these disparities are linked to variations in the affected brain regions. Notably, the opposing changes in m6A levels observed in Parkinson's disease models exposed to manganese compared to normal Parkinson's disease models further underscore the complexity of m6A's role in neurodegenerative processes. The roles of m6A in neural stem cell proliferation, differentiation, and self-renewal, and its implications in memory and neurodegenerative diseases, appear contradictory. These inconsistencies may be attributed to the time- specific nature of m6A and its varying effects on distinct brain regions and in different environments.

3.
World J Gastroenterol ; 30(20): 2677-2688, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38855149

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic disrupted healthcare in the United States. AIM: To investigate COVID-19-related and non-COVID-19-related death and characteristics associated with excess death among inflammatory bowel disease (IBD) decedents. METHODS: We performed a register-based study using data from the National Vital Statistics System, which reports death data from over 99% of the United States population, from January 1, 2006 through December 31, 2021. IBD-related deaths among adults 25 years and older were stratified by age, sex, race/ethnicity, place of death, and primary cause of death. Predicted and actual age-standardized mortality rates (ASMRs) per 100000 persons were compared. RESULTS: 49782 IBD-related deaths occurred during the study period. Non-COVID-19-related deaths increased by 13.14% in 2020 and 18.12% in 2021 [2020 ASMR: 1.55 actual vs 1.37 predicted, 95% confidence interval (CI): 1.26-1.49; 2021 ASMR: 1.63 actual vs 1.38 predicted, 95%CI: 1.26-1.49]. In 2020, non-COVID-19-related mortality increased by 17.65% in ulcerative colitis (UC) patients between the ages of 25 and 65 and 36.36% in non-Hispanic black (NHB) Crohn's disease (CD) patients. During the pandemic, deaths at home or on arrival and at medical facilities as well as deaths due to neoplasms also increased. CONCLUSION: IBD patients suffered excess non-COVID-19-related death during the pandemic. Excess death was associated with younger age among UC patients, and with NHB race among CD patients. Increased death at home or on arrival and due to neoplasms suggests that delayed presentation and difficulty accessing healthcare may have led to increased IBD mortality.


Subject(s)
COVID-19 , Cause of Death , Inflammatory Bowel Diseases , Humans , COVID-19/mortality , COVID-19/epidemiology , Male , Female , Middle Aged , Adult , United States/epidemiology , Aged , Inflammatory Bowel Diseases/mortality , SARS-CoV-2 , Registries/statistics & numerical data , Aged, 80 and over , Pandemics , Colitis, Ulcerative/mortality , Colitis, Ulcerative/ethnology , Crohn Disease/mortality , Crohn Disease/ethnology , Crohn Disease/diagnosis , Age Factors
4.
J Orthop Surg Res ; 19(1): 324, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822361

ABSTRACT

BACKGROUND: The patellar height index is important; however, the measurement procedures are time-consuming and prone to significant variability among and within observers. We developed a deep learning-based automatic measurement system for the patellar height and evaluated its performance and generalization ability to accurately measure the patellar height index. METHODS: We developed a dataset containing 3,923 lateral knee X-ray images. Notably, all X-ray images were from three tertiary level A hospitals, and 2,341 cases were included in the analysis after screening. By manually labeling key points, the model was trained using the residual network (ResNet) and high-resolution network (HRNet) for human pose estimation architectures to measure the patellar height index. Various data enhancement techniques were used to enhance the robustness of the model. The root mean square error (RMSE), object keypoint similarity (OKS), and percentage of correct keypoint (PCK) metrics were used to evaluate the training results. In addition, we used the intraclass correlation coefficient (ICC) to assess the consistency between manual and automatic measurements. RESULTS: The HRNet model performed excellently in keypoint detection tasks by comparing different deep learning models. Furthermore, the pose_hrnet_w48 model was particularly outstanding in the RMSE, OKS, and PCK metrics, and the Insall-Salvati index (ISI) automatically calculated by this model was also highly consistent with the manual measurements (intraclass correlation coefficient [ICC], 0.809-0.885). This evidence demonstrates the accuracy and generalizability of this deep learning system in practical applications. CONCLUSION: We successfully developed a deep learning-based automatic measurement system for the patellar height. The system demonstrated accuracy comparable to that of experienced radiologists and a strong generalizability across different datasets. It provides an essential tool for assessing and treating knee diseases early and monitoring and rehabilitation after knee surgery. Due to the potential bias in the selection of datasets in this study, different datasets should be examined in the future to optimize the model so that it can be reliably applied in clinical practice. TRIAL REGISTRATION: The study was registered at the Medical Research Registration and Filing Information System (medicalresearch.org.cn) MR-61-23-013065. Date of registration: May 04, 2023 (retrospectively registered).


Subject(s)
Deep Learning , Patella , Humans , Patella/diagnostic imaging , Patella/anatomy & histology , Retrospective Studies , Male , Female , Automation , Radiography/methods , Middle Aged , Adult
5.
Sci Rep ; 14(1): 12643, 2024 06 02.
Article in English | MEDLINE | ID: mdl-38825602

ABSTRACT

This study compared the radiologic and clinical outcomes of a new seven-axis robotic-assisted total hip arthroplasty (THA) and conventional THA. Hundred and four patients were randomly assigned to two groups-the robotic-assisted THA group (RAS group) and the conventional THA group (CON group). The preoperative and postoperative Harris Hip score (HHS), acetabular inclination, anteversion, femoral offset, and leg length discrepancy (LLD) were compared. During the follow-up, no patients had any complications that could be associated with the use of the robot. The proportion of acetabular cups in the safety zone was significantly higher in the RAS group than that in the CON group. The two groups had significantly different mean absolute difference of inclination and anteversion. There was no significant difference in the postoperative HHSs, changes in HHSs, femoral offset, and lower limb length between the two groups. The seven-axis robotic-assisted THA system is safe and effective, and leads to better acetabulum cup positioning compared to conventional THA. The improvements observed in the HHS, LLD, and femoral offset in the RAS group were similar to those in the CON group.Clinical trial registration time: 19/05/2022.Clinical trial registration number: ChiCTR2200060115.


Subject(s)
Arthroplasty, Replacement, Hip , Robotic Surgical Procedures , Humans , Arthroplasty, Replacement, Hip/methods , Arthroplasty, Replacement, Hip/instrumentation , Male , Female , Robotic Surgical Procedures/methods , Middle Aged , Prospective Studies , Aged , Treatment Outcome , Acetabulum/surgery
6.
BMC Psychol ; 12(1): 327, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835103

ABSTRACT

BACKGROUND AND RESEARCH OBJECTIVES: Given the enduring popularity of higher education, there has been considerable attention on the correlation between college students' engagement in sports and their academic stress levels. This study seeks to delve deeply into how university physical education fosters academic performance by influencing students' sports interests, particularly in enhancing their psychological resilience to mitigate academic pressure. Through this investigation, the aim is to offer both theoretical underpinnings and empirical evidence to support the holistic enhancement of higher education. RESEARCH METHODS: Initially, this study undertakes an analysis of the fundamental relationship between college students' physical activities and their experience of academic stress. Subsequently, utilizing a structural equation model, specific research models and hypotheses are formulated. These are then examined in detail through the questionnaire method to elucidate the mechanism by which college sports interests alleviate academic stress. RESEARCH FINDINGS: The study reveals a significant positive correlation between psychological resilience and academic stress, indicating that a robust psychological resilience can effectively diminish academic pressure. Furthermore, both the sports atmosphere and sports interest are found to exert a notable positive impact on academic stress, mediated by the variable of psychological toughness. This underscores the pivotal role of physical education in fostering positive psychological traits and enhancing academic achievement. CONCLUSION: This study underscores the central importance of cultivating and nurturing college students' sports interests, as well as fostering a conducive sports atmosphere, in fortifying psychological resilience and mitigating academic pressure. By offering novel perspectives and strategies for alleviating the academic stress faced by college students, this study contributes valuable theoretical insights and practical experiences to the broader development of higher education.


Subject(s)
Resilience, Psychological , Sports , Stress, Psychological , Students , Humans , Stress, Psychological/psychology , Students/psychology , Students/statistics & numerical data , Male , Universities , Sports/psychology , Female , Young Adult , Adult , Academic Performance/psychology , Surveys and Questionnaires , Adolescent
7.
Int Immunopharmacol ; 137: 112431, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38897125

ABSTRACT

Osteoarthritis (OA), a degenerative joint disorder, has an unclear immune infiltration mechanism in subchondral bone (SCB). Thus, this study aims to discern immune infiltration variations in SCB between early- and late-stages of OA and identify pertinent biomarkers. Utilizing the GSE515188 bulk-seq profile from the Gene Expression Omnibus database, we performed single-sample gene-set enrichment analysis alongside weighted gene co-expression network analysis to identify key cells and immune-related genes (IRGs) involved in SCB at both stages. At the meanwhile, differentially expressed genes (DEGs) were identified in the same dataset and intersected with IRGs to find IR-DEGs. Protein-protein interaction network and enrichment analyses and further gene filtering using LASSO regression led to the discovery of potential biomarkers, which were then validated by ROC curve analysis, single-cell RNA sequencing, qRT-PCR, western blot and immunofluorescence. ScRNA-seq analysis using GSE196678, qRT-PCR, western blot and immunofluorescence results confirmed the upregulation of their expression levels in early-stage OA SCB samples. Our comprehensive analysis revealed lymphocytes infiltration as a major feature in early OA SCB. A total of 13 IR-DEGs were identified, showing significant enrichment in T- or B-cell activation pathways. Three of them (CD247, POU2AF1, and TNFRSF13B) were selected via the LASSO regression analysis, and results from the ROC curve analyses indicated the diagnostic efficacy of these 3 genes as biomarkers. These findings may aid in investigating the mechanisms of SCB immune infiltration in OA, stratifying OA progression, and identifying relevant therapeutic targets.

8.
Heliyon ; 10(11): e32113, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38867946

ABSTRACT

Introduction: Dysregulation in lipid metabolism contributes to the occurrence and development of various cancers. The connection between changes in lipid metabolism and the development of intrahepatic cholangiocarcinoma remains uncertain. Our objective was to investigate the significance of blood lipid levels in patients with intrahepatic cholangiocarcinoma who have undergone surgery. Methods: Ninety-seven ICC patients who underwent surgery were retrospectively enrolled. After 92.2 months of follow-up, the Kaplan-Meier analysis and Cox proportional hazard model were used to calculate overall survival and recurrence-free survival. Results: The median age of this cohort was 56 years, and 79 (81.4 %) of them were male. Eighty-eight (90.7 %) patients presented with tumor recurrence and 73 (75.3 %) died. In multivariate analyses, high-density lipoprotein cholesterol level (<0.91 vs. ≥ 0.91 mmol/L, hazard ratio [HR] = 2.55; 95 % CI: 1.38-4.71), lymph node metastasis (Yes vs. No, HR = 2.58; 95 % CI: 1.28-5.19), etiology factor (chronic HBV infection vs. others, HR = 0.5; 95 % CI: 0.28-0.88) and multiple tumor lesions (Yes vs. No, HR = 1.85; 95 % CI: 1.01-3.39) were independent predictors of overall survival. However, only high-density lipoprotein cholesterol level (HR = 1.86; 95 % CI: 1.19-2.92) emerged as the independent factor for recurrence-free survival. High-density lipoprotein cholesterol level (HR = 2.07; 95 % CI: 1.26-3.41), etiology factor (HR = 0.49; 95 % CI: 0.29-0.84), and multiple tumor lesions (HR = 2.00; 95 % CI: 1.14-3.51) were independent predictors of early recurrence. For patients who did not experience the spread of cancer to the lymph nodes, there was a significant correlation between the level of high-density lipoprotein cholesterol and their overall survival, recurrence-free survival, and early recurrence. For patients with low pre-operation high-density lipoprotein cholesterol levels, high post-operation high-density lipoprotein cholesterol levels were associated with better prognosis. Conclusions: Low serum high-density lipoprotein cholesterol level might serve as a sign of poor clinical outcomes (overall survival and recurrence-free survival) and early recurrence among intrahepatic cholangiocarcinoma patients. Strengthening the monitoring and intervention of intrahepatic cholangiocarcinoma patients with poor prognosis might be critical for improving the prognosis.

9.
Clin Chim Acta ; 561: 119816, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38885755

ABSTRACT

BACKGROUND: The precise role of lysophospholipids (LysoPLs) in the pathogenesis of acute exacerbations of Chronic Obstructive Pulmonary Disease (AECOPD) remains unclear. In this study, we sought to elucidate the differences in serum LysoPL metabolite profiles and their correlation with clinical features between patients with low versus high CRP levels. METHODS: A total of 58 patients with AECOPD were enrolled in the study. Patients were classified into two groups: low CRP group (CRP < 20 mg/L, n = 34) and high CRP group (CRP ≥ 20 mg/L, n = 24). Clinical data were collected, and the LysoPL metabolite profiles were analyzed using Liquid Chromatography-Mass Spectrometry (LC-MS) and identified by matching with the LipidBlast library. RESULTS: Nineteen differential LysoPLs were initially identified through Student's t-test (p < 0.05 and VIP > 1). Subsequently, four LysoPLs, LPC(16:0), LPE(18:2), LPC(22:0), and LPC(24:0), were identified by FDR adjustment (adjusted p < 0.05). These four lysoPLs had a significant negative correlation with CRP. Integrative analysis revealed that LPC (16:0) and LPC (22:0) correlated with less hypercapnic respiratory failure and ICU admission. CONCLUSION: AECOPD patients with high CRP levels demonstrated a distinctive LysoPL metabolism profile, with LPC (16:0), LPE(18:2), LPC(22:0), and LPC(24:0) being the most significantly altered lipid molecules. These alterations were associated with poorer clinical outcomes.

10.
Ying Yong Sheng Tai Xue Bao ; 35(5): 1251-1259, 2024 May.
Article in Chinese | MEDLINE | ID: mdl-38886423

ABSTRACT

Species richness plays an important role in ecosystem stability and health. Mycorrhizal type is an important factor affecting ecological processes. How mycorrhizal types affect understory herb species richness and their responses to environmental changes remain largely unknown. We investigated the effects of mycorrhizal types on species richness and their responses to environmental change in understory herbaceous communities based on data of three mycorrhizal types of dominated trees (including 1604 arbuscular mycorrhiza (AM) trees, 4654 ectomycorrhiza (ECM) trees, and 5568 AM+ECM trees) and environmental factors in America. The results showed significant differences in species richness of herbaceous plant communities among different mycorrhizal types. Forests with higher dominance of AM plants tended to have higher herbaceous plant richness, supporting the mycorrhizal mediation hypothesis. The impacts of environmental factors (latitude, temperature, precipitation, nitrogen deposition, and soil characteristics) on species richness of herbaceous plant communities depended on mycorrhizal type of forests. The species richness of understory herbs in AM, ECM, and AM+ECM forests was mostly affected by nitrogen deposition, temperature, and soil pH, with the relative importance of 42.3%, 41.1% and 48.7%, respectively. Mycorrhizal types of dominant trees played a vital role in regulating the species richness of understory herbs and influenced their responses to environmental changes.


Subject(s)
Biodiversity , Ecosystem , Forests , Mycorrhizae , Trees , Mycorrhizae/classification , Mycorrhizae/physiology , Trees/growth & development , Trees/microbiology , Trees/classification , China , Population Dynamics
11.
Epigenomics ; : 1-4, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38869463
12.
ACS Nano ; 18(23): 15096-15106, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38810232

ABSTRACT

Silicon is the cornerstone of electronics and photonics. In this context, almost all integrated devices derived from two-dimensional (2D) materials stay rooted in silicon technology. However, as the growth substrate, silicon has long been thought to be a hindrance for growing 2D materials through bottom-up methods that require high growth temperatures, and thus, indirect routes are usually considered instead. Although promising growth of large-area 2D materials on silicon has been demonstrated, the direct growth of single-crystalline materials using low-thermal-budget synthesis methods remains challenging. Here, we report the room-temperature growth of millimeter-scale single-crystal 2D metal halides on silicon substrates with a hydroxyl-terminated surface. Theoretical calculations reveal that the activation energy for surface diffusion can be reduced by an order of magnitude by terminating the surface with hydroxyl groups, from which on-silicon growth is greatly facilitated at room temperature and enables a 4-order-of-magnitude increase in area. The high quality and uniformity of the resulting single crystals are further evidenced. The optoelectronic devices employing the as-grown materials show an ultralow dark current of 10-13 A and a high detectivity of 1013 Jones, thereby corroborating a weak-light detection ability. These results would point to a rich space of surface modulation that can be used to surmount current limitations and demonstrate a promising strategy for growing 2D materials directly on silicon at room temperature to produce large single crystals.

13.
Environ Sci Technol ; 58(23): 9991-10000, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38814053

ABSTRACT

The circadian rhythm regulates many crucial physiological processes, impacting human aging and aging-related outcomes. Observational evidence links circadian rhythm disturbance to PM2.5 exposure, yet the underlying DNA methylation mechanisms remain unclear due to limited PM2.5-dominated experimental settings. Therefore, we investigated the associations between short-term PM2.5 exposure and DNA methylation changes of 1188 CpG candidates across circadian genes among 32 young adults in the FDU study, with the validation in 26 individuals from the PKU study. Further mediation analyses tested whether DNA methylation of circadian genes could mediate the influence of PM2.5 on aging measured by three epigenetic ages: DNAmGrimAge, DunedinPoAm, and the mortality risk score. We identified three CpG sites associated with personal PM2.5 exposure: cg01248361 (CSNK2A2), cg17728065 (RORA), and cg22513396 (PRKAG2). Acute effects of PM2.5 on the three loci could be mediated by several circulating biomarkers, including MDA and EGF, with up to ∼30% of mediated proportions. Three loci further showed varying potentials in mediating the aging acceleration effect of PM2.5. Locus cg17728065 is the key site exhibiting a robust mediating effect (7.54-12.52%) on PM2.5-induced aging acceleration. Our findings demonstrated that PM2.5, even short-term peaks, could leave imprints on human aging via inducing aberrant temporal fluctuation in circadian homeostasis captured by DNA methylation profiles.


Subject(s)
Circadian Rhythm , DNA Methylation , Particulate Matter , Humans , Male , Female , Adult , Environmental Exposure , CpG Islands
14.
Arch Med Sci ; 20(2): 428-435, 2024.
Article in English | MEDLINE | ID: mdl-38757040

ABSTRACT

Introduction: Invasive micropapillary carcinoma (IMPC) treatment only relies on the standard treatment of nonspecific invasive breast cancer (NSIBC), and it remains controversial whether the survival of patients improves. Therefore, this study aimed to analyze the clinicopathological features of IMPC and to investigate the factors affecting its prognosis. Material and methods: This retrospective cohort study included 104 IMPC patients who met the study's inclusion criteria out of a total of 4,532 patients with invasive breast cancer between January 2015 and December 2019. A contemporaneous cohort of 230 patients with non-specific invasive breast cancer (NSIBC) who underwent surgery was identified and matched using propensity scores. Results: The survival rate for patients with IMPC ranged from 1.12% to 7.03%. Statistically significant differences were observed in the proportion of endocrine treatment, lymphatic invasion, estrogen receptor (ER)-positive rate, molecular subtypes, molecular typing, and 5-year loco-regional recurrence-free survival (LRRFS) between the two cohorts (p < 0.05). The univariate analysis showed that T stage, N stage, lymphatic invasion, vascular invasion, ER-positive rate, and progesterone receptor (PR)-negative rate were all prognosis risk factors (p < 0.05) for IMPC. Furthermore, the multivariate analysis indicated that lymphatic invasion and N stage were independent prognostic factors (p < 0.05). Conclusions: The incidence of micropapillary IMPC, among other pathological subtypes, is steadily increasing. ER-positive and PR-positive rates, as well as luminal subtypes, are frequent, with a concurrent increase in the 5-year locoregional recurrence rate. It would be interesting to compare the effect following these therapeutic modifications in larger cohorts in future studies.

15.
Foods ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38790833

ABSTRACT

Acidic stress in beef cattle slaughtering abattoirs can induce the acid adaptation response of in-plant contaminated Salmonella. This may further lead to multiple resistance responses threatening public health. Therefore, the acid, heat, osmotic and antibiotic resistances of Salmonella typhimurium (ATCC14028) were evaluated after a 90 min adaption in a pH = 5.4 "mild acid" Luria-Bertani medium. Differences in such resistances were also determined between the ∆phoP mutant and wild-type Salmonella strains to confirm the contribution of the PhoP/PhoQ system. The transcriptomic differences between the acid-adapted and ∆phoP strain were compared to explore the role of the PhoP/Q two-component system in regulating multi-stress resistance. Acid adaptation was found to increase the viability of Salmonella to lethal acid, heat and hyperosmotic treatments. In particular, acid adaptation significantly increased the resistance of Salmonella typhimurium to Polymyxin B, and such resistance can last for 21 days when the adapted strain was stored in meat extract medium at 4 °C. Transcriptomics analysis revealed 178 up-regulated and 274 down-regulated genes in the ∆phoP strain. The Salmonella infection, cationic antimicrobial peptide (CAMP) resistance, quorum sensing and two-component system pathways were down-regulated, while the bacterial tricarboxylic acid cycle pathways were up-regulated. Transcriptomics and RT-qPCR analyses revealed that the deletion of the phoP gene resulted in the down-regulation of the expression of genes related to lipid A modification and efflux pumps. These changes in the gene expression result in the change in net negative charge and the mobility of the cell membrane, resulting in enhanced CAMP resistance. The confirmation of multiple stress resistance under acid adaptation and the transcriptomic study in the current study may provide valuable information for the control of multiple stress resistance and meat safety.

16.
Materials (Basel) ; 17(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38730805

ABSTRACT

For solid waste-based cementitious materials, most scholars focus their research on the hydration reaction of cementitious materials, but there is still a lack of solid waste design that comprehensively considers mechanical properties and durability. Therefore, this article focuses on exploring the mix of design and the microscopic and macroscopic properties of multi solid waste cementitious materials (MSWCMs), namely steel slag (SS), slag powder (SP), desulfurization gypsum (DG), fly ash (FA), and ordinary Portland cement (OPC). According to the orthogonal experimental results, the compressive strength of MSWCMs is optimal when the OPC content is 50% and the SS, SP, DG, and FA contents are 10%, 20%, 5%, and 15%, respectively. The MSWCMs group with an OPC content of 50% and SS, SP, DG, and FA contents of 5%, 15%, 5%, and 25% was selected as the control group. The pure OPC group was used as the blank group, and the optimal MSWCMs ratio group had a 28-day compressive strength of 50.7 megapascals, which was 14% and 7.6% higher than the control group and blank group, respectively. The drying shrinkage rate and resistance to chloride ions were also significantly improved, with maximum increases of 22.9%, 22.6%, and 8.9%, 9.8%, respectively. According to XRD, TG-DTG, and NMR testing, the improvement in macroscopic performance can be attributed to the synergistic effect between various solid wastes. This synergistic effect produces more ettringite (AFt) and C-(A)-S-H gel. This study provides a good theoretical basis for improving the comprehensive performance of MSWCMs and is conducive to reducing the use of cement, with significant economic and environmental benefits.

17.
Int Immunopharmacol ; 136: 112264, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-38810308

ABSTRACT

BACKGROUND: Chemotaxis and trafficking of dendritic cells (DCs) induced by cytokine receptors are crucial steps in rheumatoid arthritis (RA) pathogenesis. C-C chemokine receptor type 5 (CCR5) plays a key role in DC movement and has been implicated in multitudinous inflammatory and immunology diseases. Thus, targeting CCR5 to suppress DC chemotaxis is considered as a potential strategy for the management of RA. METHODS: Herein, we first synthesized a new hybrid named CT3-1 which based on artesunate and isatin. Besides, we studied the regulating effectiveness of CT3-1 on bone marrow-derived DCs (BMDCs) and on collagen-induced arthritis (CIA) through RNA-seq analysis, cell function experiments in vitro and mice model in vivo. RESULTS: The results shown that CT3-1 mainly reduced CCR5 expression of immature BMDCs and importantly inhibited immature BMDC migration induced by CCR5 in vitro, with no or minor influence on other functions of DCs, such as phagocytosis and maturation. In the mouse model, CT3-1 relieved arthritis severity and inhibited CIA development. Furthermore, CT3-1 intervention decreased the expression of CCR5 in DCs and reduced the proportion of DCs in the peripheral blood of CIA mice. CONCLUSIONS: Our findings suggest that CCR5-induced chemotaxis and trafficking of immature DCs are important in RA. Targeting CCR5 and inhibiting immature DC chemotaxis may provide a novel choice for the treatment of RA and other similar autoimmune diseases. Moreover, we synthesized a new hybrid compound CT3-1 that could inhibit immature DC trafficking and effectively relieve RA by directly reducing the CCR5 expression of immature DCs.


Subject(s)
Artesunate , Arthritis, Experimental , Arthritis, Rheumatoid , Chemotaxis , Dendritic Cells , Receptors, CCR5 , Animals , Dendritic Cells/drug effects , Dendritic Cells/immunology , Receptors, CCR5/metabolism , Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Chemotaxis/drug effects , Artesunate/pharmacology , Artesunate/therapeutic use , Mice , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , Mice, Inbred DBA , Male , Cells, Cultured , Humans
18.
Small ; : e2401346, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38700047

ABSTRACT

Transparent flexible energy storage devices are limited by the trade-off among flexibility, transparency, and charge storage capability of their electrode materials. Conductive polymers are intrinsically flexible, but limited by small capacitance. Pseudocapacitive MXene provides high capacitance, yet their opaque and brittle nature hinders their flexibility and transparency. Herein, the development of synergistically interacting conductive polymer Ti3C2Tx MXene/PEDOT:PSS composites is reported for transparent flexible all-solid-state supercapacitors, with an outstanding areal capacitance of 3.1 mF cm-2, a high optical transparency of 61.6%, and excellent flexibility and durability. The high capacitance and high transparency of the devices stem from the uniform and thorough blending of PEDOT:PSS and Ti3C2Tx, which is associated with the formation of O─H…O H-bonds in the composites. The conductive MXene/polymer composite electrodes demonstrate a rational means to achieve high-capacity, transparent and flexible supercapacitors in an easy and scalable manner.

19.
Nat Struct Mol Biol ; 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649617

ABSTRACT

A universal characteristic of eukaryotic transcription is that the promoter recruits RNA polymerase II (RNAPII) to produce both precursor mRNAs (pre-mRNAs) and short unstable promoter upstream transcripts (PROMPTs) toward the opposite direction. However, how the transcription machinery selects the correct direction to produce pre-mRNAs is largely unknown. Here, through multiple acute auxin-inducible degradation systems, we show that rapid depletion of an RNAPII-binding protein complex, Integrator, results in robust PROMPT accumulation throughout the genome. Interestingly, the accumulation of PROMPTs is compensated by the reduction of pre-mRNA transcripts in actively transcribed genes. Consistently, Integrator depletion alters the distribution of polymerase between the sense and antisense directions, which is marked by increased RNAPII-carboxy-terminal domain Tyr1 phosphorylation at PROMPT regions and a reduced Ser2 phosphorylation level at transcription start sites. Mechanistically, the endonuclease activity of Integrator is critical to suppress PROMPT production. Furthermore, our data indicate that the presence of U1 binding sites on nascent transcripts could counteract the cleavage activity of Integrator. In this process, the absence of robust U1 signal at most PROMPTs allows Integrator to suppress the antisense transcription and shift the transcriptional balance in favor of the sense direction.

20.
Article in English | MEDLINE | ID: mdl-38669621

ABSTRACT

HgTe colloidal quantum dots (CQDs) are one of few materials that can realize near-to-midwave infrared photodetection. And the quality of HgTe CQD directly affects the performance of photodetection. In this work, we optimize the method of synthesizing HgTe CQDs to reduce the defect concentration, therefore improving the photoelectric properties. The photodetector based on HeTe CQD can respond to the light from the visible to mid-infrared band. Notably, a photoresponse to 4000 nm light at room temperature is realized. The responsivity and detectivity are 90.6 mA W-1 and 6.9 × 107 Jones under 1550 nm light illumination, which are better than these of most reported HgTe CQD photodetectors. The response speed reaches a magnitude of microseconds with a rising time of τr = 1.9 µs and a falling time of τf = 1.5 µs at 10 kHz under 1550 nm light illumination.

SELECTION OF CITATIONS
SEARCH DETAIL
...