Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(24)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38138476

ABSTRACT

This study primarily focused on the efficient transformation of low-priced blue coke powder into a high-capacity adsorbent and aimed to address the pollution issue of hexavalent chromium (Cr (VI))-laden wastewater and to facilitate the effective utilization of blue coke powder. A two-step method was utilized to fabricate a blue coke-based nitric acid-modified material (LCN), and the impact of nitric acid modification on the material's structure and its efficacy in treating Cr (VI)-contaminated wastewater was evaluated. Our experimental results illustrated that, under identical conditions, LCN exhibited superior performance for Cr (VI) treatment compared to the method employing only potassium hydroxide (LCK). The specific surface area and pore volume of LCN were 1.39 and 1.36 times greater than those of LCK, respectively. Further chemical composition analysis revealed that the functional group structure on the LCN surface was more conducive to Cr (VI) adsorption. The highest amount of Cr (VI) that LCN could bind was measured at 181.962 mg/g at 318 K. This was mostly due to chemisorption, which is dominated by redox reactions. The Cr (VI) removal process by LCN was identified to be a spontaneous, exothermic, and entropy-increasing process. Several tests on recycling and reuse showed that LCN is a stable and effective chromium-containing wastewater adsorbent, showing that it could be used in many situations.

2.
Sci Rep ; 13(1): 7223, 2023 May 04.
Article in English | MEDLINE | ID: mdl-37142630

ABSTRACT

To solve the issue of hexavalent chromium (Cr(VI)) contamination in water bodies, blue coke powder (LC) was chemically changed using potassium hydroxide to create the modified material (GLC), which was then used to treat a Cr(VI)-containing wastewater solution. The differences between the modified and unmodified blue coke's adsorption characteristics for Cr(VI) were studied, and the impact of pH, starting solution concentration, and adsorption period on the GLC's adsorption performance was investigated. The adsorption behavior of the GLC was analyzed using isothermal adsorption models, kinetic models, and adsorption thermodynamic analysis. The mechanism of Cr(VI) adsorption by the GLC was investigated using characterization techniques such as Fourier Transform Infrared Spectroscopy (FTIR), Field Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS). With the biggest difference in removal rate at pH = 2, which was 2.42 times that of LC, batch adsorption experiments revealed that, under the same adsorption conditions, the GLC always performed better than LC. With a specific surface area that was three times that of LC and an average pore diameter that was 0.67 times that of LC, GLC had a more porous structure than LC. The alteration significantly increased the number of hydroxyls on the surface of GLC by altering the structural makeup of LC. The ideal pH for removing Cr(VI) was 2, and the ideal GLC adsorbent dosage was 2.0 g/L. Pseudo-second-order kinetic (PSO) model and Redlich-Peterson (RP) model can effectively describe the adsorption behavior of GLC for Cr(VI). Physical and chemical adsorption work together to remove Cr(VI) by GLC in a spontaneous, exothermic, and entropy-increasing process, with oxidation-reduction processes playing a key role. GLC is a potent adsorbent that can be used to remove Cr(VI) from aqueous solutions.

3.
Heliyon ; 9(2): e13267, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36798761

ABSTRACT

To provide guidance for the selection of woody-activated carbon in the treatment of wastewater containing hexavalent chromium (Cr(VI)), the adsorption tests on two varieties of commercial woody-activated carbon powder from different manufacturers were carried out. The physicochemical properties and structural characteristics of activated carbon were studied by using elemental, chemical, and instrumental analyses. The adsorption mechanism of Cr(VI) was discussed by investigating the factors affecting the removal of hexavalent chromium. The two kinds of woody-activated carbon have microporous and mesoporous structures. Commercial woody-activated carbon No.1 (ACI) has a more extensive specific surface area and a better-developed pore structure. While ACI exhibits a higher adsorption capability when the content of Cr(VI) is high, commercial woody-activated carbon No.2 (AC) can remove hexavalent chromium fast when the concentration is low. A rise in pH value is not helpful for the materials to remove Cr(VI) from solutions. For Cr(VI) removal, the optimum pH value is 2. The adsorption of Cr(VI) by AC and ACI followed the pseudo-second-order kinetic model and Langmuir isothermal adsorption equation. The maximum adsorption value of Cr(VI) is 154.56 mg/g for AC and 241.55 mg/g for ACI. There is chemical adsorption during the Cr(VI) removal. A lot of Cr (Ⅲ) was formed by Cr(VI). The abundance of pores and the reducing ability of the materials are essential for the removal of Cr(VI).

4.
Environ Sci Pollut Res Int ; 30(1): 1276-1287, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35915303

ABSTRACT

In this study, the synthesis of a coal gasification slag-humic acid (SA) hybrid was purposed for the remediation of cadmium (Cd)-contaminated soil. In order to investigate the effect of SA on the Cd-contaminated soil and plant growth, a series of experiments were carried out under different illumination condition. The results showed that the SA has some the photocatalytic activity, and adding 10 wt% of SA to the soil could obviously improve the soil fertility and decrease the mobility of Cd in the soil under alternated light/dark cycle (12L/12D); the content of the residual fraction in the SA-amended soil reached 69.5%, and the Cd decreasing rates for the leaf, stem, and root of Artemisia ordosica were near 100%, 91.3%, and 75.3%, respectively. Characterizations of amendments suggested that the synergistic effect of precipitation and surface complexation played a major role in the remediation of Cd-contaminated soil.


Subject(s)
Cadmium , Soil Pollutants , Cadmium/analysis , Humic Substances , Coal , Soil Pollutants/analysis , Soil
5.
RSC Adv ; 12(18): 11047-11051, 2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35425070

ABSTRACT

We report the synthesis and crystal structure of novel co-ligand phosphine/alkynyl protected Au nanoclusters, with composition [Au11(PPh3)8(C[triple bond, length as m-dash]CPh-CF3)2](SbF6) (1). The gold atoms in the cluster as a capped crown structure subtend C 3v symmetry with one deriving from a central icosahedron and 10 peripheral Au atoms, and all alkynides are exclusively σ coordination bonding. The mean core diameter is about 5.1 Å and the overall van der Waals diameter can be estimated to be 20.5 Å. The optical absorbance of 1 in solution reveals characteristic peaks at 384 and 426 nm and a shoulder between 450 and 550 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...