Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Front Plant Sci ; 15: 1369330, 2024.
Article in English | MEDLINE | ID: mdl-38576782

ABSTRACT

The plant pathogenic fungus Blumeria graminis f. sp. tritici infects wheat and reduces its yield. The policy of reducing fertilizer and biocide use in sustainable agriculture has prompted researchers to develop more green and efficient management strategies. In this study, a novel nanoprotective membrane (kaolin-nano titanium dioxide-liquid paraffin, referred to as KTP) that could effectively prevent powdery mildew of wheat was prepared by using 1 g/L kaolin, 2 g/L nanotitanium dioxide and 8% (v/v) liquid paraffin. The prevention and control effects of KTP spraying in advance in the pot and field experiments were 98.45% and 83.04%, respectively. More importantly, the weight of 1000 grains of wheat pretreated with KTP was 2.56 g higher than that of wheat infected with powdery mildew, significantly improving wheat yield. KTP delayed the germination of powdery mildew spores on the leaf surface, and inhibited the formation of mycelia. In addition, KTP did not affect the growth of wheat or the survival of earthworms. KTP nanoprotective membrane are a green and safe prevention and control materials that are which is expected to be widely used in agriculture to control wheat powdery mildew.

2.
Planta ; 259(3): 71, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353793

ABSTRACT

MAIN CONCLUSION: Plant growth regulators, sucrose concentration, and light quality significantly impact in vitro regeneration of 'Harmony'. Blue light promotes photomorphogenesis by enhancing light energy utilization, adjusting transcription of light signal genes, and altering hormone levels. Hydrangea quercifolia cv. 'Harmony', celebrated for lush green foliage and clusters of white flowers, has been extensively researched for its regenerative properties. Regeneration in stem segments, leaves, and petioles is facilitated by exogenous auxin and cytokinins (CTKs), with the concentration of sucrose (SC) being a key determinant for shoot regeneration from leaves. The study also highlights the significant impact of light conditions on photomorphogenesis. With an increase in the proportion of red (R) light, there is an inhibitory effect, leading to a reduction in leaf area, a decrease in the quantum yield of PSII (ΦPSII), and an increase in non-photochemical quenching (ΦNPQ) and non-regulated energy dissipation in PSII (ΦNO). Conversely, blue (B) light enhances growth, characterized by an increase in leaf area, elevated ΦPSII, and stable ΦNPQ and ΦNO levels. Additionally, B light induces the upregulation of HqCRYs, HqHY5-like, HqXTH27-like, and HqPHYs genes, along with an increase in endogenous CTKs levels, which positively influence photomorphogenesis independent of HqHY5-like regulation. This light condition also suppresses the synthesis of endogenous gibberellins (GA) and brassinosteroids (BR), further facilitating photomorphogenesis. In essence, B light is fundamental in expediting photomorphogenesis in 'Harmony', demonstrating the vital role in plant growth and development.


Subject(s)
Hydrangea , Plant Growth Regulators , Blue Light , Cytokinins , Sucrose , Gene Expression
3.
J Org Chem ; 87(5): 3461-3467, 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35076235

ABSTRACT

An efficient free-radical-promoted unactivated C(sp3)-H dehydrogenative coupling reaction of free alcohols at the δ position with quinone and chromone has been developed. This reaction has a good functional group tolerance and substrate scope; various alcohols reacted with quinones and chromones to give the corresponding C(sp2)-H alkylation products in moderate to good yields. A gram-scale experiment can be successfully operated. This protocol provides a sustainable and practical strategy for the late-stage functionalization of alcohols with quinones and chromones by constructing the challenging δ-selective C(sp3)-C(sp2) bond.

4.
BMC Plant Biol ; 21(1): 447, 2021 Oct 06.
Article in English | MEDLINE | ID: mdl-34615481

ABSTRACT

BACKGROUND: Panax notoginseng (Burk.) F. H. Chen (P. notoginseng) is a medicinal plant. Cytochrome P450 (CYP450) monooxygenase superfamily is involved in the synthesis of a variety of plant hormones. Studies have shown that CYP450 is involved in the synthesis of saponins, which are the main medicinal component of P. notoginseng. To date, the P. notoginseng CYP450 family has not been systematically studied, and its gene functions remain unclear. RESULTS: In this study, a total of 188 PnCYP genes were identified, these genes were divided into 41 subfamilies and clustered into 9 clans. Moreover, we identified 40 paralogous pairs, of which only two had Ka/Ks ratio greater than 1, demonstrating that most PnCYPs underwent purification selection during evolution. In chromosome mapping and gene replication analysis, 8 tandem duplication and 11 segmental duplication events demonstrated that PnCYP genes were continuously replicating during their evolution. Gene ontology (GO) analysis annotated the functions of 188 PnCYPs into 21 functional subclasses, suggesting the functional diversity of these gene families. Functional divergence analyzed the members of the three primitive branches of CYP51, CYP74 and CYP97 at the amino acid level, and found some critical amino acid sites. The expression pattern of PnCYP450 related to nitrogen treatment was studied using transcriptome sequencing data, 10 genes were significantly up-regulated and 37 genes were significantly down-regulated. Combined with transcriptome sequencing analysis, five potential functional genes were screened. Quantitative real-time PCR (qRT-PCR) indicated that these five genes were responded to methyl jasmonate (MEJA) and abscisic acid (ABA) treatment. CONCLUSIONS: These results provide a valuable basis for comprehending the classification and biological functions of PnCYPs, and offer clues to study their biological functions in response to nitrogen treatment.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Nitrogen/metabolism , Panax notoginseng/genetics , Panax notoginseng/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genes, Plant , Genetic Variation , Genome , Genotype , Phylogeny
5.
Plant Cell Rep ; 40(10): 1971-1987, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34392380

ABSTRACT

KEY MESSAGE: PeTCP10 can be induced by salt stresses and play important regulation roles in salt stresses response in transgenic Arabidopsis. Salt stress is one of the major adverse environmental factors that affect normal plant development and growth. PeTCP10, a Class I TCP member, was markedly expressed in moso bamboo mature leaf, root and stem under normal conditions and also induced by salt stress. Overexpressed PeTCP10 was found to enhance salt tolerance of transgenic Arabidopsis at the vegetative growth stage. It was also found capable to increase relative water content, while decreasing relative electrolyte leakage and Na+ accumulation of transgenic Arabidopsis versus wild-type (WT) plants at high-salt conditions. In addition, it improved antioxidant capacity of transgenic Arabidopsis plants by promoting catalase activity and enhanced their H2O2 tolerance. In contrast to WT plants, transcriptome analysis demonstrated that multiple genes related to abscisic acid, salt and H2O2 response were induced after NaCl treatment in transgenic plants. Meanwhile, overexpressed PeTCP10 improved the tolerance of abscisic acid. Moreover, luciferase reporter assay results showed that PeTCP10 is able to directly activate the expression of BT2 in transgenic plants. In contrary, the germination rates of transgenic plants were significantly lower than those of WT plants under high-NaCl conditions. Both primary root length and survival rate at the seedling stage are also found lower in transgenic plants than in WT plants. It is concluded that overexpressed PeTCP10 enhances salt stress tolerance of transgenic plants at the vegetative growth stage, and it also improves salt sensitiveness in both germination and seedling stages. These research results will contribute to further understand the functions of TCPs in abiotic stress response.


Subject(s)
Arabidopsis/physiology , Salt Tolerance/genetics , Sasa/genetics , Transcription Factors/genetics , Abscisic Acid/pharmacology , Arabidopsis/drug effects , Arabidopsis/genetics , Chlorophyll/genetics , Chlorophyll/metabolism , Gene Expression Regulation, Plant , Germination/genetics , Malondialdehyde/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plants, Genetically Modified , Potassium/metabolism , Seedlings/genetics , Seeds/genetics , Sodium/metabolism , Transcription Factors/metabolism , Two-Hybrid System Techniques
6.
Plant Physiol Biochem ; 164: 205-221, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34004558

ABSTRACT

Plant monovalent cation/proton antiporters (CPAs), types of transmembrane transporters, play important roles in resistance to salt stress. In this study, 37 CPA genes from moso bamboo (Phyllostachys edulis) were identified and characterised. The expression profiles of 10 CPA1 genes (PheNHXs) of moso bamboo were detected by qRT-PCR, which showed that they were specifically expressed in six tissues. In addition, the expression of 10 PheNHXs in leaves and roots changed significantly under 150/200 mM NaCl and 100 µM ABA treatments. In particular, the expression of PheNHX2 in leaves and roots was significantly upregulated under NaCl treatment, thus, we cloned PheNHX2 and analysed its function. Subcellular localisation analysis showed that PheNHX2 was located on the vacuolar membrane. Overexpression of PheNHX2 reduced seed germination and root growth of Arabidopsis thaliana under salt stress, as well as severely affecting cellular Na+ and K+ content, which in turn reduced the salt tolerance of transgenic Arabidopsis. Measurements of physiological indicators, including chlorophyll content, malondialdehyde content, peroxidase and catalase enzyme activities and relative electrical conductivity, all supported this conclusion. Under salt stress, PheNHX2 also inhibited the expression of some stress-related and ion transport-related genes in transgenic Arabidopsis. Overall, these results indicate that overexpression of PheNHX2 reduces the salt tolerance of transgenic Arabidopsis. This investigation establishes a foundation for subsequent functional studies of moso bamboo CPA genes, and it provides a deeper understanding of PheNHX2 regulation in relation to the salt tolerance of moso bamboo.


Subject(s)
Arabidopsis , Antiporters/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Cations, Monovalent , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Poaceae/genetics , Poaceae/metabolism , Protons
7.
Physiol Plant ; 171(3): 309-327, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32134494

ABSTRACT

In the past few years, many studies have reported that the transcription factor Nuclear Factor Y (NF-Y) gene family plays important roles in embryonic development, photosynthesis, flowering time regulation and stress response, in various plants. Although the NF-Y gene family has been systematically studied in many species, little is known about NF-Y genes in Populus. In this study, the NF-Y gene family in the Populus genome was identified and its structural characteristics were described. Fifty-two NF-Y genes were authenticated in the Populus trichocarpa genome and categorized into three subfamilies (NF-YA/B/C) by phylogenetic analysis. Chromosomal localization of these genes revealed that they were distributed randomly across 17 of the 19 chromosomes. Segmental duplication played a vital role in the amplification of Populus NF-Y gene family. Moreover, microsynteny analysis indicated that, among Populus trichocarpa, Arabidopsis thaliana, Vitis vinifera and Carica papaya, NF-Y duplicated regions were more conserved between Populus trichocarpa and Vitis vinifera. Redundant stress-related cis-elements were also found in the promoters of most 13 NF-YA genes and their expression levels varied widely following drought, salt, ABA and cold treatments. Subcellular localization experiments in tobacco showed that PtNF-YA3 was localized in nucleus and cytomembrane, while PtNF-YA4 was only in the nucleus in tobacco. According to the transcriptional activity experiments, neither of them had transcriptional activity in yeast. In summary, a comprehensive analysis of the Populus NF-Y gene family was performed to establish a theoretical basis for further functional studies on this family.


Subject(s)
Populus , CCAAT-Binding Factor , Gene Expression Profiling , Gene Expression Regulation, Plant/genetics , Multigene Family , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Populus/genetics , Populus/metabolism , Transcription Factors/metabolism
8.
Physiol Plant ; 172(1): 91-105, 2021 May.
Article in English | MEDLINE | ID: mdl-33280114

ABSTRACT

Moso bamboo (Phyllostachys edulis), a high-value bamboo used to produce food (young shoots), building, and industrial goods. To explore key candidate genes regulating signal transduction and metabolic processes during the initiation of stem elongation in moso bamboo, a transcriptome analysis of the shoots during three successive early elongation stages was performed. From cluster and differential expression analyses, 2984 differentially expressed genes (DEGs) were selected for an enrichment analysis. The DEGs were significantly enriched in the plant hormone signal transduction, sugar and starch metabolism, and energy metabolism pathways. Consequently, the DEG expression patterns of these pathways were analyzed, and the plant endogenous hormone and carbon metabolite (including sucrose, total soluble sugar, and starch) contents for each growth stage, of the shoot, were determined. The cytokinin-signaling pathway was continuously active in the three successive elongation stages, in which several cytokinin-signaling genes played indispensable roles. Additionally, many key DEGs regulating sugar, starch metabolism, and energy conversion, which are actively involved in energy production and substrate synthesis during the continuous growth of the shoots, were found. In summary, our study lays a foundation for understanding the mechanisms of moso bamboo growth and provides useful gene resources for breeding through genetic engineering.


Subject(s)
Gene Expression Regulation, Plant , Transcriptome , Gene Expression Profiling , Metabolic Networks and Pathways/genetics , Poaceae/genetics , Signal Transduction/genetics
9.
Plant Cell Rep ; 40(1): 187-204, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33098450

ABSTRACT

KEY MESSAGE: 78 HD-Zip family genes in Phyllostachys edulis were analyzed. Overexpression of Phehdz1 can improve the drought tolerance of transgenic rice and affect its secondary metabolism. Many studies suggested homeodomain-leucine zipper (HD-Zip) transcription factors are important regulators of plant growth and development, signal transduction, and responses to environmental stresses. In this study, 78 moso bamboo (Phyllostachys edulis) HD-Zip genes were investigated and classified into four subfamilies (HD-Zip I-IV). Additionally, Phehdz1 (HD-Zip I gene) was isolated and confirmed to be highly expressed in the roots. A quantitative real-time PCR analysis indicated Phehdz1 expression was significantly induced by drought, high salinity, and abscisic acid (ABA). A transient expression assay proved that Phehdz1 was localized in the nucleus of tobacco cells. Moreover, it could bind to the core region encoded by the H-box sequence (CAATAATTG) in yeast. In response to mannitol treatments, the Phehdz1-overexpressing transgenic rice had a higher germination rate and longer shoots than the wild-type controls. Moreover, Phehdz1-overexpressing rice plants had a higher survival rate as well as higher relative water and proline contents, but a lower malondialdehyde content, than the WT plants after a 30% polyethylene glycol 6000 treatment. Accordingly, the overexpression of Phehdz1 enhances the drought tolerance of transgenic rice. Many of the differentially expressed genes identified by a transcriptome analysis are involved in MAPK signal transduction and the biosynthesis of secondary metabolites. Thus, the overexpression of Phehdz1 enhances the drought stress tolerance of transgenic rice, while also potentially modulating the expression of metabolism-related genes.


Subject(s)
Droughts , Oryza/physiology , Plant Proteins/genetics , Poaceae/genetics , Transcription Factors/genetics , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , DNA, Plant/metabolism , Dehydration/genetics , Gene Expression Regulation, Plant , Germination/drug effects , Mannitol/pharmacology , Multigene Family , Oryza/drug effects , Oryza/genetics , Phylogeny , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/physiology , Salinity , Transcription Factors/metabolism
10.
Front Plant Sci ; 11: 579255, 2020.
Article in English | MEDLINE | ID: mdl-33240298

ABSTRACT

CCCH zinc finger proteins are a class of important zinc-finger transcription factors and have functions in various plant growth and stress responses, but their functions in moso bamboo (Phyllostachys edulis) are unclear. In this current study, we main investigated the structures, phylogenetic relationships, promoter elements and microsynteny of PeC3Hs. In this research, 119 CCCH zinc finger proteins (PeC3H1-119) identified genes in moso bamboo were divided into 13 subfamilies (A-M) based on phylogenetic analysis. Meanwhile, moso bamboo were treated with abscisic acid (ABA), methyl jasmonate (Me-JA) and gibberellic acid (GA) and 12 CCCH genes expression levels were assayed using qRT-PCR. In the three hormone treatments, 12 genes were up-regulated or down-regulated, respectively. In addition, PeC3H74 was localized on the cytomembrane, and it had self-activation activities. Phenotypic and physiological analysis showed that PeC3H74 (PeC3H74-OE) conferred drought tolerance of transgenic Arabidopsis, including H2O2 content, survival rate, electrolyte leakage as well as malondialdehyde content. Additionally, compared with wild-type plants, transgenic Arabidopsis thaliana seedling roots growth developed better under 10 µM ABA; Moreover, the stomatal of over-expressing PeC3H74 in Arabidopsis changed significantly under ABA treatment. The above results suggest that PeC3H74 was quickly screened by bioinformatics, and it may enhanced drought tolerance in plants through the ABA-dependent signaling pathway.

11.
Plant Sci ; 299: 110605, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32900443

ABSTRACT

Drought-induced 19 (Di19) proteins play crucial roles in regulating stress responses, but the exact mechanisms underlying their involvement in moso bamboo are not fully understood. In this study, PheDi19-8 of moso bamboo (Phyllostachys edulis) was isolated and characterized. PheDi19-8 was a nuclear protein and has a high expression under various abiotic stresses, including drought and salt. As revealed by phenotypic and physiological analyses, ectopic overexpression of PheDi19-8 in Arabidopsis and rice enhanced drought tolerance. Under drought stress, the PheDi19-8-overexpressing lines showed smaller stomatal apertures and higher survival rate in comparison to the wild-type plants, as well as the PheDi19-8-overexpressing lines had higher biomass and souble sugar, but lower relative electrolyte leakage and malondialdehyde. Further investigation revealed that PheDi19-8 interacted with PheCDPK22, and their interaction decreased the DNA-binding activity of PheDi19-8. However, overexpression of PheCDPK22 enhanced Arabidopsis sensitivity to drought stress. Moreover, the expression of marker genes, including LEA, RD22, DREB2A and RD29A, was up-regulated in the PheDi19-8-overexpressing lines but down-regulated in the PheCDPK22-overexpressing. Further yeast one-hybrid and EMSA assays indicated that PheDi19-8 directly binds to the promoter of DREB2A. These results provided new insight into the interaction of PheCDPK22 and PheDi19-8 that functions oppositely to regulate drought stress in plants.


Subject(s)
Droughts , Gene Expression Regulation, Plant/physiology , Plant Proteins/genetics , Poaceae/physiology , Arabidopsis/genetics , Arabidopsis/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Poaceae/genetics
12.
Plant Physiol Biochem ; 154: 184-194, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32563042

ABSTRACT

Abscisic acid, stress and ripening (ASR) transcription factors comprise a small family of proteins that play a key role in stress responses in plants. ASR genes involved in drought tolerance in moso bamboo (Phyllostachys edulis) are largely unknown. In our study, an ASR gene, PheASR2, was isolated and characterized. The expression of PheASR2 was up-regulated under various abiotic stresses, including drought, salt and abscisic acid (ABA). PheASR2 was localized in the nucleus in tobacco cells, and displayed transactivation activity in yeast. Ectopic expression of PheASR2 in rice conferred enhanced tolerance to drought stress, as determined through physiological analyses of germination rate, plant height, water loss and survival rate. The PheASR2-overexpressing transgenic plants showed an increase in reactive oxygen species (ROS), electrolyte leakage and malondialdehyde levels, reduced enzyme (CAT and SOD) activities, and higher expression of genes encoding ROS-scavenging enzymes. Consequently, the transgenic plants exhibited increased tolerance to oxidative stress compared with wild-type plants. Moreover, following ABA treatment, the seed germination rate and plant height of the PheASR2-overexpressing lines were inhibited, and stomatal closure was reduced. The expression of marker genes, including, OsAREB, OsP5CS1, OsLEA, and OsNCED2, was up-regulated in the PheASR2-overexpressing lines when subjected to drought treatment. Together, these results indicate that PheASR2 functions in drought stress tolerance through ABA signaling.


Subject(s)
Abscisic Acid/pharmacology , Droughts , Oryza/physiology , Plant Proteins/genetics , Poaceae/genetics , Transcription Factors/genetics , Gene Expression Regulation, Plant , Oryza/genetics , Plants, Genetically Modified/physiology , Stress, Physiological
13.
Planta ; 251(5): 99, 2020 Apr 21.
Article in English | MEDLINE | ID: mdl-32318830

ABSTRACT

MAIN CONCLUSION: Overexpression ofPeVQ28in Arabidopsis regulated the expression of salt/ABA-responsive genes and indicated thatPeVQ28may affect the ABA synthesis induced by stress in plants by regulating salt tolerance. Plant-specific VQ proteins, which contain a conserved short FxxhVQxhTG amino acid sequence motif, play an important role in abiotic stress responses, but their functions have not been previously studied in Moso bamboo (Phyllostachys edulis). In this study, real-time quantitative PCR analysis indicated that expression of PeVQ28 was induced by salt and abscisic acid stresses. A subcellular localization experiment showed that PeVQ28 was localized in the nuclei of tobacco leaf cells. Yeast two-hybrid and bimolecular fluorescence complementation analyses indicated that PeVQ28 and WRKY83 interactions occurred in the nucleus. The PeVQ28-overexpressing Arabidopsis lines showed increased resistance to salt stress and enhanced sensitivity to ABA. Compared with wild-type plants under salt stress, PeVQ28-transgenic plants had lower malondialdehyde and higher proline contents, which might enhance stress tolerance. Overexpression of PeVQ28 in Arabidopsis enhanced expression of salt- and ABA-responsive genes. These results suggest that PeVQ28 functions in the positive regulation of salt tolerance mediated by an ABA-dependent signaling pathway.


Subject(s)
Abscisic Acid/metabolism , Gene Expression Regulation, Plant , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Poaceae/genetics , Proline/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Gene Expression , Malondialdehyde/metabolism , Plant Proteins/genetics , Plants, Genetically Modified , Poaceae/physiology , Salt Stress , Salt Tolerance , Signal Transduction , Species Specificity , Stress, Physiological , Two-Hybrid System Techniques
14.
PeerJ ; 7: e7510, 2019.
Article in English | MEDLINE | ID: mdl-31579567

ABSTRACT

Growth-regulating factor (GRF), a small plant-specific transcription factor (TF) family, is extensively involved in the regulation of growth and developmental processes. However, the GRF family has not been comprehensively studied in moso bamboo (Phyllostachys edulis), a typical non-timber forest member. Here, 18 GRF genes were identified and characterized from the moso bamboo genome, and they clustered into three subfamilies (A, B and C). PeGRF genes were analyzed to determine their gene structures, conserved motifs and promoter. The non-synonymous/synonymous substitution ratios of paralogous and orthologous were less than 1, indicating that the GRF family mainly experienced purifying selection during evolution. According to the analysis of tissue-specific expression patterns, the participation of moso bamboo GRFs might be required during the formation and development of these five tissues. Moreover, PeGRF proteins might be involved in the regulation of plant development in biological processes. The qRT-PCR analysis demonstrated that PeGRF genes played essential roles in combating hormonal stresses and they might be involved in hormone regulation. PeGRF11, a nuclear localized protein as assessed by a subcellular localization assay, could interact with PeGIF3 in yeast and in planta according to yeast two-hybridization and bimolecular fluorescence complementation assays (BiFC) assays. But PeGRF11, as a TF, had no transcriptional activity in yeast. These results provide useful information for future functional research on the GRF genes in moso bamboo.

15.
BMC Plant Biol ; 19(1): 154, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31023225

ABSTRACT

BACKGROUND: Trihelix transcription factors (TTFs) are photoresponsive proteins that have a representative three-helix structure (helix-loop-helix-loop-helix). Members of this gene family have been reported to play roles in many plant processes. RESULTS: In this study, we performed a functional and evolutionary analysis of the TTFs in Moso bamboo (Phyllostachys edulis). A total of 35 genes were identified and grouped into five subfamilies (GT-1, GT-γ, GT-2, SIP1 and SH4) according to their structural properties. Gene structure analysis showed that most genes in the PeTTF family had fewer introns. A unique motif (Motif 16) to the GT-γ subfamily was identified by conserved motif analysis. Promoter analysis revealed various cis-acting elements related to plant growth and development, abiotic and biotic stresses, and phytohormone responses. Data for the 35 Moso bamboo TTF genes were used to generate heat maps, which indicated that these genes were expressed in different tissues or developmental stages. Most of the TTF genes identified here had high expression in leaves and panicles according to the expression profile analysis. The expression levels of the TTF members in young leaves were studied using quantitative real-time PCR to determine their tissue specificity and stress-related expression patterns to help functionally characterize individual members. CONCLUSIONS: The results indicated that members of the TTF gene family may be involved in plant responses to stress conditions. Additionally, PeTTF29 was shown to be located in the nucleus by subcellular localization analysis and to have transcriptional activity in a transcriptional activity assay. Our research provides a comprehensive summary of the PeTTF gene family, including functional and evolutionary perspectives, and provides a basis for functionally characterizing these genes.


Subject(s)
Evolution, Molecular , Poaceae/genetics , Transcription Factors/genetics , Acetates/pharmacology , Arabidopsis/genetics , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Conserved Sequence , Cyclopentanes/pharmacology , Gene Expression Profiling , Gene Expression Regulation, Plant/drug effects , Gene Ontology , Genes, Plant , Nucleotide Motifs , Oryza/genetics , Oxylipins/pharmacology , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Promoter Regions, Genetic , Transcription Factors/metabolism , Transcriptional Activation/drug effects , Transcriptional Activation/genetics
16.
Front Plant Sci ; 9: 1263, 2018.
Article in English | MEDLINE | ID: mdl-30344527

ABSTRACT

TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (T), members of a plant-specific gene family, play significant roles during plant growth and development, as well as in response to environmental stress. However, knowledge about this family in moso bamboo (Phyllostachys edulis) is limited. Therefore, in this study, the first genome-wide identification, classification, characterization, and expression pattern analysis of the TCP transcription factor family in moso bamboo was performed. Sixteen TCP members were identified from the moso bamboo genome using a BLASTP algorithm-based method and verified using the Pfam database. Based on a multiple-sequence alignment, the members were divided into two subfamilies, and members of the same family shared highly conserved motif structures. Subcellular localization and transactivation activity analyses of four selected genes revealed that they were nuclear localized and had self-activation activities. Additionally, the expression levels of several PeTCP members were significantly upregulated under abscisic acid, methyl jasmonate, and salicylic acid treatments, indicating that they play crucial plant hormone transduction roles in the processes of plant growth and development, as well as in responses to environmental stresses. Thus, the current study provides previously lacking information on the TCP family in moso bamboo and reveals the potential functions of this gene family in growth and development.

17.
Plant Physiol Biochem ; 130: 431-444, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30077919

ABSTRACT

Auxin plays a central role in many aspects of plant growth and development. The auxin/indole-3-acetic acid (Aux/IAA) and auxin response transcription factor (ARF) genes are key components of plant auxin signaling. However, little is known about the Aux/IAA and ARF gene families in moso bamboo (Phyllostachys edulis). In this paper, we first identified 35 putative PeIAAs and 24 PeARFs in the moso bamboo genome. These genes were clustered into two major groups (A and B) and four groups (I-IV), respectively, based on phylogenetic analysis. Next, analyses of evolutionary patterns and divergence demonstrated that both the PeIAAs and PeARFs experienced a large-scale duplication event around 15 million years ago (MYA). The divergence times of the two gene families were 31 MYA between moso bamboo and rice, and 46 MYA between moso bamboo and maize. Furthermore, the expression profiling of PeIAA and PeARF genes in various tissues and developmental stages revealed tissue-specific expression. qRT-PCR analysis confirmed the differential expression patterns of selected PeIAA and PeARF genes. And then a comprehensive expression analysis of these genes was also performed under exogenous hormone treatment by qRT-PCR. Many PeIAAs and PeARFs showed differential expression in response to IAA treatment. Subcellular localization results show that PeIAA8 is a nuclear localization protein. Most importantly, we demonstrate that single moso bamboo ARF can interact with multiple Aux/IAA proteins and vice versa. Collectively, the detailed analyses presented here will help in understanding the roles of the PeIAA and PeARF gene families and contribute to further research on their biological functions during development in moso bamboo.


Subject(s)
Genes, Plant/genetics , Indoleacetic Acids/metabolism , Plant Growth Regulators/genetics , Poaceae/genetics , Transcription Factors/genetics , Conserved Sequence/genetics , Gene Expression Profiling , Oryza/genetics , Phylogeny , Plant Growth Regulators/metabolism , Poaceae/metabolism , Real-Time Polymerase Chain Reaction , Transcription Factors/metabolism
18.
Plant Physiol Biochem ; 123: 378-391, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29304483

ABSTRACT

Plant homeodomain (PHD)-finger proteins are a class of important zinc-finger transcription factors responsible for regulating transcription and the chromatin state and responsive to various stresses. The family genes have been reported in many plants, but there is little information about PHD-finger genes in moso bamboo. In this study, 60 PHD-finger genes (PePHD1-60) were identified in moso bamboo and classified into 11 subfamilies (A-K) based on phylogenetic analysis. Gene structure and conserved motif analysis showed that these genes contained different numbers of introns but had similar motif organizations within each subfamily. Multiple sequence alignment revealed that the PHD-finger proteins possessed conserved structural domain sequences. In addition, the family underwent purifying selection during evolution and experienced a large-scale duplication event around 7.69-15.4 million years ago. Most importantly, the expression profiles of young leaves (YL), mature leaves (L), roots (R), stems (S), shoots (Sh) and rhizomes (Rh) displayed that they might involve in the formation of these tissues. Based on promoter analysis of 16 putative stress-related genes, quantitative real-time PCR assays were performed using moso bamboo leaves and showed that these genes were differentially regulated under abscisic acid (ABA), drought, low temperature and NaCl treatments. Therefore, the results reveal that PePHD genes play crucial roles in organ formation and response to multiple environmental stress conditions of moso bamboo, which will make for further function analysis of PHD-finger genes in plants.


Subject(s)
Gene Expression Regulation, Plant/physiology , Genome-Wide Association Study , Magnoliopsida , PHD Zinc Fingers , Plant Proteins , Magnoliopsida/genetics , Magnoliopsida/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics
19.
Planta ; 246(1): 165-181, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28417193

ABSTRACT

MAIN CONCLUSION: 29 Moso bamboo VQ proteins were genome-wide identified for the first time, and bioinformatics analysis was performed to investigate phylogenetic relationships and evolutionary divergence. The qRT-PCR data show that PeVQ genes response to different stress treatments. Accumulating evidence suggests that VQ motif-containing proteins in rice (Oryza sativa), Arabidopsis (Arabidopsis thaliana), and maize (Zea mays) play fundamental roles in response to various biotic and abiotic stresses. However, little is known about the functions of VQ family proteins in Moso bamboo (Phyllostachys edulis). In this study, we performed a genome-wide bioinformatic analysis and expression profiling of PeVQ genes. A total of 29 VQ genes was identified and divided into seven subgroups (I-VII) based on phylogenetic analysis. Gene structure and conserved motif analysis revealed that 25 of 29 VQ genes contained no introns. Multiple sequence alignment showed that Moso bamboo VQ motif-containing proteins contained five variations of the conserved motif. The time of duplication and divergence of Moso bamboo from rice and maize was calculated using K s analysis. A heat map was generated using microarray data from 29 Moso bamboo VQ genes suggesting that these genes were expressed in different tissues or developmental stages. Quantitative real-time PCR (qRT-PCR) and promoter analysis indicated that PeVQ genes were differentially regulated following treatment with polyethylene glycol, abscisic acid and salicylic acid. Our results provide a solid foundation for further research of the specific functions of VQ motif-containing proteins in Moso bamboo.


Subject(s)
Plant Proteins/genetics , Poaceae/genetics , Gene Expression Regulation, Plant/genetics , Genome, Plant/genetics , Multigene Family/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...