Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 3.236
Filter
1.
J Biomed Res ; : 1-12, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38808557

ABSTRACT

The retinal pigment epithelium (RPE) is fundamental to sustaining retinal homeostasis. RPE abnormality leads to visual defects and blindness, including age-related macular degeneration (AMD). Although breakthroughs have been made in the treatment of neovascular AMD, effective intervention for atrophic AMD is largely absent. The inadequate knowledge of RPE pathology is hindered by a lack of patient RPE datasets, especially at the single-cell resolution. In this study, we delved into a large-scale single-cell resource of AMD donors in which RPE cells were occupied in a substantial proportion. Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD. Both in vivo and in vitro models revealed that carboxypeptidase X, M14 family member 2 (CPXM2) was specifically expressed in the RPE cells of atrophic AMD, which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells. Additionally, silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model. Thus, our results demonstrate that CPXM2 plays a crucial role in regulating atrophic AMD and may serve as a potential therapeutic target for atrophic AMD.

2.
Article in English | MEDLINE | ID: mdl-38811333

ABSTRACT

OBJECTIVES: We aimed to evaluate the histopathological alterations in human salivary glands after radioactive iodine (RAI) treatment for thyroid diseases. STUDY DESIGN: We retrospectively selected patients with a history of RAI treatment for thyroid diseases from a database of patients who underwent surgery for oral and maxillofacial diseases and had specimens of salivary glands at Peking University School of Stomatology between December 2012 and July 2023. The patients' clinical records and histopathological slides of the salivary glands were carefully reviewed. RESULTS: Sixteen patients were included. Three symptomatic patients showed duct cell cytoplasmic vacuolization and increased numbers of disordered duct cell layers (3/3), severe duct stenosis and dilation (2/3), and exfoliated epithelial cells in the duct lumen (1/3). The glandular parenchyma showed severe acinar atrophy (2/2), fat content enhancement (2/2), and severe periductal fibrosis (3/3). Thirteen asymptomatic patients showed duct cell cytoplasmic vacuolization (5/13), acinar atrophy and increased fat content in the parenchyma (5/13), and periductal fibrosis (5/13). CONCLUSION: Main histopathologic changes in the salivary glands after RAI treatment for thyroid diseases are cytoplasmic vacuolization of duct cells, acinar atrophy, fat content enhancement, and periductal fibrosis. These changes were evident in symptomatic cases, and were also seen in some asymptomatic patients.

3.
Theriogenology ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38821784

ABSTRACT

Decreased oocyte quality is a significant contributor to the decline in female fertility that accompanies aging in mammals. Oocytes rely on mRNA stores to support their survival and integrity during the protracted period of transcriptional dormancy as they await ovulation. However, the changes in mRNA levels and interactions that occur during porcine oocyte maturation and aging remain unclear. In this study, the mRNA expression profiles of porcine oocytes during the GV, MII, and aging (24 h after the MII stage) stages were explored by transcriptome sequencing to identify the key genes and pathways that affect oocyte maturation and postovulatory aging. The results showed that 10,929 genes were coexpressed in porcine oocytes during the GV stage, MII stage, and aging stage. In addition, 3037 genes were expressed only in the GV stage, 535 genes were expressed only in the MII stage, and 120 genes were expressed only in the aging stage. The correlation index between the GV and MII stages (0.535) was markedly lower than that between the MII and aging stages (0.942). A total of 3237 genes, which included 1408 upregulated and 1829 downregulated genes, were differentially expressed during porcine oocyte postovulatory aging (aging stage vs. MII stage). Key functional genes, including ATP2A1, ATP2A3, ATP2B2, NDUFS1, NDUFA2, NDUFAF3, SREBF1, CYP11A1, CYP3A29, GPx4, CCP110, STMN1, SPC25, Sirt2, SYCP3, Fascin1/2, PFN1, Cofilin, Tmod3, FLNA, LRKK2, CHEK1/2, DDB1/2, DDIT4L, and TONSL, and key molecular pathways, such as the calcium signaling pathway, MAPK signaling pathway, TGF-ß signaling pathway, PI3K/Akt signaling pathway, FoxO signaling pathway, gap junctions, and thermogenesis, were found in abundance during porcine postovulatory aging. These genes are mainly involved in the regulation of many biological processes, such as oxidative stress, calcium homeostasis, mitochondrial function, and lipid peroxidation, during porcine oocyte postovulatory aging. These results contribute to a more in-depth understanding of the biological changes, key regulatory genes and related biological pathways that are involved in oocyte aging and provide a theoretical basis for improving the efficiency of porcine embryo production in vitro and in vivo.

4.
J Cancer ; 15(11): 3427-3440, 2024.
Article in English | MEDLINE | ID: mdl-38817863

ABSTRACT

Purpose: Platinum-based chemotherapy is effective but limited by resistance in high-grade serous ovarian cancer (HGSOC). Single-cell RNA sequencing (scRNA-seq) can reveal tumour cell heterogeneity and subclonal differentiation. We aimed to analyze resistance mechanisms and potential targets in HGSOC using scRNA-seq. Methods: We performed 10× genomics scRNA-seq sequencing on tumour tissues from 3 platinum-sensitive and 3 platinum-resistant HGSOC patients. We analyzed cell subcluster communication networks and spatial distribution using cellchat. We performed RNA-seq analysis on TACSTD2, a representative resistance gene in the E0 subcluster, to explore its molecular mechanism. Results: Epithelial cells, characterized by distinct chemotherapy resistance traits and highest gene copy number variations, revealed a specific cisplatin-resistant cluster (E0) associated with poor prognosis. E0 exhibited malignant features related to resistance, fostering growth through communication with fibroblasts and endothelial cells. Spatially, E0 promoted fibroblasts to protect tumour cells and impede immune cells infiltration. Furthermore, TACSTD2 was identified as a representative gene of the E0 subcluster, elucidating its role in platinum resistance through the Rap1/PI3K/AKT pathway. Conclusions: Our study reveals a platinum-resistant epithelial cell subcluster E0 and its association with TACSTD2 in HGSOC, uncovers new insights and evidence for the platinum resistance mechanism, and provides new ideas and targets for the development of therapeutic strategies against TACSTD2+ epithelial cancer cells.

5.
World J Hepatol ; 16(5): 809-821, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818287

ABSTRACT

BACKGROUND: Acute-on-chronic liver disease (AoCLD) accounts for the majority of patients hospitalized in the Department of Hepatology or Infectious Diseases. AIM: To explore the characterization of AoCLD to provide theoretical guidance for the accurate diagnosis and prognosis of AoCLD. METHODS: Patients with AoCLD from the Chinese Acute-on-Chronic Liver Failure (ACLF) study cohort were included in this study. The clinical characteristics and outcomes, and the 90-d survival rate associated with each clinical type of AoCLD were analyzed, using the Kaplan-Meier method and the log-rank test. RESULTS: A total of 3375 patients with AoCLD were enrolled, including 1679 (49.7%) patients with liver cirrhosis acute decompensation (LC-AD), 850 (25.2%) patients with ACLF, 577 (17.1%) patients with chronic hepatitis acute exacerbation (CHAE), and 269 (8.0%) patients with liver cirrhosis active phase (LC-A). The most common cause of chronic liver disease (CLD) was HBV infection (71.4%). The most common precipitants of AoCLD was bacterial infection (22.8%). The 90-d mortality rates of each clinical subtype of AoCLD were 43.4% (232/535) for type-C ACLF, 36.0% (36/100) for type-B ACLF, 27.0% (58/215) for type-A ACLF, 9.0% (151/1679) for LC-AD, 3.0% (8/269) for LC-A, and 1.2% (7/577) for CHAE. CONCLUSION: HBV infection is the main cause of CLD, and bacterial infection is the main precipitant of AoCLD. The most common clinical type of AoCLD is LC-AD. Early diagnosis and timely intervention are needed to reduce the mortality of patients with LC-AD or ACLF.

6.
ACS Nano ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776420

ABSTRACT

Hydrogen production by photosynthetic hybrid systems (PBSs) offers a promising avenue for renewable energy. However, the light-harvesting efficiency of PBSs remains constrained due to unclear intracellular kinetic factors. Here, we present an operando elucidation of the sluggish light-harvesting behavior for existing PBSs and strategies to circumvent them. By quantifying the spectral shift in the structural color scattering of individual PBSs during the photosynthetic process, we observe the accumulation of product hydrogen bubbles on their outer membrane. These bubbles act as a sunshade and inhibit light absorption. This phenomenon elucidates the intrinsic constraints on the light-harvesting efficiency of PBSs. The introduction of a tension eliminator into the PBSs effectively improves the bubble sunshade effect and results in a 4.5-fold increase in the light-harvesting efficiency. This work provides valuable insights into the dynamics of transmembrane transport gas products and holds the potential to inspire innovative designs for improving the light-harvesting efficiency of PBSs.

7.
Skeletal Radiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771507

ABSTRACT

OBJECTIVE: This study aims to explore the feasibility of employing convolutional neural networks for detecting and localizing implant cutouts on anteroposterior pelvic radiographs. MATERIALS AND METHODS: The research involves the development of two Deep Learning models. Initially, a model was created for image-level classification of implant cutouts using 40191 pelvic radiographs obtained from a single institution. The radiographs were partitioned into training, validation, and hold-out test datasets in a 6/2/2 ratio. Performance metrics including the area under the receiver operator characteristics curve (AUROC), sensitivity, and specificity were calculated using the test dataset. Additionally, a second object detection model was trained to localize implant cutouts within the same dataset. Bounding box visualizations were generated on images predicted as cutout-positive by the classification model in the test dataset, serving as an adjunct for assessing algorithm validity. RESULTS: The classification model had an accuracy of 99.7%, sensitivity of 84.6%, specificity of 99.8%, AUROC of 0.998 (95% CI: 0.996, 0.999) and AUPRC of 0.774 (95% CI: 0.646, 0.880). From the pelvic radiographs predicted as cutout-positive, the object detection model could achieve 95.5% localization accuracy on true positive images, but falsely generated 14 results from the 15 false-positive predictions. CONCLUSION: The classification model showed fair accuracy for detection of implant cutouts, while the object detection model effectively localized cutout. This serves as proof of concept of using a deep learning-based approach for classification and localization of implant cutouts from pelvic radiographs.

8.
World J Gastrointest Oncol ; 16(5): 2159-2167, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38764827

ABSTRACT

BACKGROUND: The research findings suggest that the prognosis of children with Wilms tumor (WT) is affected by various factors. Some scholars have indicated that loss of heterozygosity (LOH) on chromosome 16q is associated with a poor prognosis in patients with WT. AIM: To further elucidate this relationship, we conducted a meta-analysis. METHODS: This meta-analysis was registered in INPLASY (INPLASY2023100060). We systematically searched databases including Embase, PubMed, Web of Science, Cochrane, and Google Scholar up to May 31, 2020, for randomized trials reporting any intrapartum fetal surveillance approach. The meta-analysis was performed within a frequentist framework, and the quality and network inconsistency of trials were assessed. Odds ratios and 95%CIs were calculated to report the relationship between event-free survival and 16q LOH in patients with WT. RESULTS: Eleven cohort studies were included in this meta-analysis to estimate the relationship between event-free survival and 16q LOH in patients with WT (I2 = 25%, P < 0.001). As expected, 16q LOH can serve as an effective predictor of event-free survival in patients with WT (risk ratio = 1.95, 95%CI: 1.52-2.49, P < 0.001). CONCLUSION: In pediatric patients with WT, there exists a partial correlation between 16q LOH and an unfavorable treatment prognosis. Clinical detection of 16q chromosome LOH warrants increased attention to the patient's prognosis.

9.
Hum Cell ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744794

ABSTRACT

Epithelial mesenchymal transition (EMT) occurring in retinal pigment epithelial cells (RPE) is a crucial mechanism that contributes to the development of age-related macular degeneration (AMD), a pivotal factor leading to permanent vision impairment. Long non-coding RNAs (lncRNAs) have emerged as critical regulators orchestrating EMT in RPE cells. In this study, we explored the function of the lncRNA CYTOR (cytoskeleton regulator RNA) in EMT of RPE cells and its underlying mechanisms. Through weighted correlation network analysis, we identified CYTOR as an EMT-related lncRNA associated with AMD. Experimental validation revealed that CYTOR orchestrates TGF-ß1-induced EMT, as well as proliferation and migration of ARPE-19 cells. Further investigation demonstrated the involvement of CYTOR in regulating the WNT5A/NFAT1 pathway and NFAT1 intranuclear translocation in the ARPE-19 cell EMT model. Mechanistically, CHIP, EMSA and dual luciferase reporter assays confirmed NFAT1's direct binding to CYTOR's promoter, promoting transcription. Reciprocally, CYTOR overexpression promoted NFAT1 expression, while NFAT1 overexpression increased CYTOR transcription. These findings highlight a mutual promotion between CYTOR and NFAT1, forming a positive feedback loop that triggers the EMT phenotype in ARPE-19 cells. These discoveries provide valuable insights into the molecular mechanisms of EMT and its association with AMD, offering potential avenues for targeted therapies in EMT-related conditions, including AMD.

10.
Adv Sci (Weinh) ; : e2310017, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38747256

ABSTRACT

Laser-induced graphene (LIG) technology has provided a new manufacturing strategy for the rapid and scalable assembling of triboelectric nanogenerators (TENG). However, current LIG-based TENG commonly rely on polymer films, e.g., polyimide (PI) as both friction material and carbon precursor of electrodes, which limit the structural diversity and performance escalation due to its incapability of folding and creasing. Using specialized PI paper composed of randomly distributed PI fibers to substantially enhance its foldability, this work creates a new type of TENG, which are structurally foldable and stackable, and performance tailorable. First, by systematically investigating the laser power-regulated performance of single-unit TENG, the open-circuit voltage can be effectively improved. By further exploiting the folding process, multiple TENG units can be assembled together to form multi-layered structures to continuously expand the open-circuit voltage from 5.3 to 34.4 V cm-2, as the increase of friction units from 1 to 16. Last, by fully utilizing the unique structure and performance, representative energy-harvesting and smart-sensing applications are demonstrated, including a smart shoe to recognize running motions and power LEDs, a smart leaf to power a thermometer by wind, a matrix sensor to recognize writing trajectories, as well as a smart glove to recognize different objects.

11.
Cells ; 13(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38727285

ABSTRACT

With the increasing proportion of the aging population, neurodegenerative diseases have become one of the major health issues in society. Neurodegenerative diseases (NDs), including multiple sclerosis (MS), Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), are characterized by progressive neurodegeneration associated with aging, leading to a gradual decline in cognitive, emotional, and motor functions in patients. The process of aging is a normal physiological process in human life and is accompanied by the aging of the immune system, which is known as immunosenescence. T-cells are an important part of the immune system, and their senescence is the main feature of immunosenescence. The appearance of senescent T-cells has been shown to potentially lead to chronic inflammation and tissue damage, with some studies indicating a direct link between T-cell senescence, inflammation, and neuronal damage. The role of these subsets with different functions in NDs is still under debate. A growing body of evidence suggests that in people with a ND, there is a prevalence of CD4+ T-cell subsets exhibiting characteristics that are linked to senescence. This underscores the significance of CD4+ T-cells in NDs. In this review, we summarize the classification and function of CD4+ T-cell subpopulations, the characteristics of CD4+ T-cell senescence, the potential roles of these cells in animal models and human studies of NDs, and therapeutic strategies targeting CD4+ T-cell senescence.


Subject(s)
CD4-Positive T-Lymphocytes , Cellular Senescence , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/immunology , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/therapy , CD4-Positive T-Lymphocytes/immunology , Cellular Senescence/immunology , Animals , Aging/immunology , Aging/pathology , T-Cell Senescence
12.
Front Oncol ; 14: 1401839, 2024.
Article in English | MEDLINE | ID: mdl-38800396

ABSTRACT

Background: Desmoid tumor (DT) is a rare locally aggressive but non-metastatic mesenchymal soft tissue neoplasm that predominantly occurs in the abdominal wall, abdominal cavity, and extremities. Its occurrence in the mesentery is relatively uncommon. Case reports: This article reports two cases of desmoid tumor treated at the Department of Gastrointestinal Surgery, Weifang People's Hospital. The first case was a 59-year-old male patient who had previously undergone surgery for esophagogastric junction cancer. Postoperatively, he developed an intra-abdominal mass that rapidly increased in size within three months. The second case was a 60-year-old male patient who incidentally discovered a mass in the left lower abdomen. Both patients underwent surgical treatment, and the postoperative pathological diagnosis was mesenteric desmoid tumor. Conclusion: The treatment of desmoid tumor remains challenging. Simple surgical resection often yields unsatisfactory outcomes, and the efficacy of adjuvant radiotherapy and chemotherapy is also limited. Further research and clinical practice are necessary to improve diagnostic and therapeutic strategies, aiming to enhance patient survival and quality of life.

13.
Article in English | MEDLINE | ID: mdl-38804626

ABSTRACT

BACKGROUND: The aim of this study was to investigate the relationship between DII and sarcopenia in individuals with ischemic heart disease (IHD). METHODS: This was a retrospective study utilizing data of the National Health and Nutrition Examination Survey (NHANES) from 1999-2004. Adults aged ≥50 years diagnosed with IHD, having complete 24-hour dietary recall data, and dual energy X-ray absorptiometry (DEXA)-measured muscle mass were eligible for inclusion. Association between DII and sarcopenia, defined by reduced appendicular skeletal muscle mass, was determined by the logistic regression analyses. RESULTS: Data of 1088 individuals were analyzed, with the mean age of 68.1±0.5 years. Significantly higher DII was observed in the sarcopenic group compared to the non-sarcopenic group (0.24 vs. -0.17, P=0.020). After adjusting for relevant confounders in the multivariable analysis, each unit increase in DII was significantly associated with higher odds of sarcopenia (adjusted odd ratio [aOR]=1.07, 95% confidence interval: 1.00-1.14, P value = 0.040). In stratified analyses, among patients with a Body Mass Index (BMI) ≥30 kg/m2, both DII tertile 2 and tertile 3 were significantly associated with greater odds of sarcopenia (tertile 2 vs. tertile 1: aOR=2.85, 95% CI: 1.56-5.23, P=0.001; tertile 3 vs. tertile 1: aOR=3.11, 95% CI: 1.53-6.31, P=0.002), whereas no significant associations was observed among patients with a BMI<30 kg/m2. CONCLUSIONS: This study has established a significant independent association between a higher DII and an increased risk of sarcopenia in US adults with IHD regardless of type of IHD. BMI appears as a moderating factor in this association.

14.
Antioxidants (Basel) ; 13(5)2024 May 20.
Article in English | MEDLINE | ID: mdl-38790724

ABSTRACT

1,4-naphthoquinones (NQs) catalytically oxidize H2S to per- and polysufides and sulfoxides, reduce oxygen to superoxide and hydrogen peroxide, and can form NQ-SH adducts through Michael addition. Here, we measured oxygen consumption and used sulfur-specific fluorophores, liquid chromatography tandem mass spectrometry (LC-MS/MS), and UV-Vis spectrometry to examine H2S oxidation by NQs with various substituent groups. In general, the order of H2S oxidization was DCNQ ~ juglone > 1,4-NQ > plumbagin >DMNQ ~ 2-MNQ > menadione, although this order varied somewhat depending on the experimental conditions. DMNQ does not form adducts with GSH or cysteine (Cys), yet it readily oxidizes H2S to polysulfides and sulfoxides. This suggests that H2S oxidation occurs at the carbonyl moiety and not at the quinoid 2 or 3 carbons, although the latter cannot be ruled out. We found little evidence from oxygen consumption studies or LC-MS/MS that NQs directly oxidize H2S2-4, and we propose that apparent reactions of NQs with inorganic polysulfides are due to H2S impurities in the polysulfides or an equilibrium between H2S and H2Sn. Collectively, NQ oxidation of H2S forms a variety of products that include hydropersulfides, hydropolysulfides, sulfenylpolysulfides, sulfite, and thiosulfate, and some of these reactions may proceed until an insoluble S8 colloid is formed.

15.
BMC Plant Biol ; 24(1): 439, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778255

ABSTRACT

BACKGROUND: Glehnia littoralis is a medicinal and edible plant species having commercial value and has several hundred years of cultivation history. Polyploid breeding is one of the most important and fastest ways to generate novel varieties. To obtain tetraploids of G. littoralis in vitro, colchicine treatment was given to the seeds and then were screened based on morphology, flow cytometry, and root tip pressing assays. Furthermore, transcriptome analysis was performed to identity the differentially expressed genes associated with phenotypic changes in tetraploid G. littoralis. RESULTS: The results showed that 0.05% (w/v) colchicine treatment for 48 h was effective in inducing tetraploids in G. littoralis. The tetraploid G. littoralis (2n = 4x = 44) was superior in leaf area, leaf thickness, petiole diameter, SPAD value (Chl SPAD), stomatal size, epidermal tissues thickness, palisade tissues thickness, and spongy tissues thickness to the diploid ones, while the stomatal density of tetraploids was significantly lower. Transcriptome sequencing revealed, a total of 1336 differentially expressed genes (DEGs) between tetraploids and diploids. Chromosome doubling may lead to DNA content change and gene dosage effect, which directly affects changes in quantitative traits, with changes such as increased chlorophyll content, larger stomata and thicker tissue of leaves. Several up-regulated DEGs were found related to growth and development in tetraploid G. littoralis such as CKI, PPDK, hisD and MDP1. KEGG pathway enrichment analyses showed that most of DEGs were enriched in metabolic pathways. CONCLUSIONS: This is the first report of the successful induction of tetraploids in G. littoralis. The information presented in this study facilitate breeding programs and molecular breeding of G. littoralis varieties.


Subject(s)
Gene Expression Profiling , Phenotype , Tetraploidy , Transcriptome , Colchicine/pharmacology , Caryophyllales/genetics , Gene Expression Regulation, Plant , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/anatomy & histology
16.
BMC Plant Biol ; 24(1): 441, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778301

ABSTRACT

BACKGROUND: Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS: We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS: In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.


Subject(s)
Chromosome Mapping , Fruit , Lycium , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Lycium/genetics , Lycium/physiology , Fruit/genetics , Fruit/physiology , Self-Incompatibility in Flowering Plants/genetics , Phenotype , China
17.
Signal Transduct Target Ther ; 9(1): 121, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38755119

ABSTRACT

Anti-PD-1 antibodies are a favorable treatment for relapsed or refractory extranodal natural killer T cell lymphoma (RR-ENKTL), however, the complete response (CR) rate and the duration of response (DOR) need to be improved. This phase 1b/2 study investigated the safety and efficacy of sintilimab, a fully human anti-PD-1 antibody, plus chidamide, an oral subtype-selective histone deacetylase inhibitor in 38 patients with RR-ENKTL. Expected objective response rate (ORR) of combination treatment was 80%. Patients received escalating doses of chidamide, administered concomitantly with fixed-dose sintilimab in 21-days cycles up to 12 months. No dose-limiting events were observed, RP2D of chidamide was 30 mg twice a week. Twenty-nine patients were enrolled in phase 2. In the intention-to-treat population (n = 37), overall response rate was 59.5% with a complete remission rate of 48.6%. The median DOR, progression-free survival (PFS), and overall survival (OS) were 25.3, 23.2, and 32.9 months, respectively. The most common grade 3 or higher treatment-emergent adverse events (AEs) were neutropenia (28.9%) and thrombocytopenia (10.5%), immune-related AEs were reported in 18 (47.3%) patients. Exploratory biomarker assessment suggested that a combination of dynamic plasma ctDNA and EBV-DNA played a vital prognostic role. STAT3 mutation shows an unfavorable prognosis. Although outcome of anticipate ORR was not achieved, sintilimab plus chidamide was shown to have a manageable safety profile and yielded encouraging CR rate and DOR in RR-ENKTL for the first time. It is a promising therapeutic option for this population.


Subject(s)
Aminopyridines , Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Benzamides , Histone Deacetylase Inhibitors , Lymphoma, Extranodal NK-T-Cell , Humans , Male , Female , Middle Aged , Benzamides/administration & dosage , Benzamides/therapeutic use , Benzamides/adverse effects , Aged , Lymphoma, Extranodal NK-T-Cell/drug therapy , Lymphoma, Extranodal NK-T-Cell/pathology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/administration & dosage , Histone Deacetylase Inhibitors/adverse effects , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/adverse effects , Adult , Aminopyridines/administration & dosage , Aminopyridines/adverse effects , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/immunology
18.
Biomed Pharmacother ; 175: 116727, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733771

ABSTRACT

Myelodysplastic syndromes (MDS) encompass a collection of clonal hematopoietic malignancies distinguished by the depletion of peripheral blood cells. The treatment of MDS is hindered by the advanced age of patients, with a restricted repertoire of drugs currently accessible for therapeutic intervention. In this study, we found that ES-Cu strongly inhibited the viability of MDS cell lines and activated cuproptosis in a copper-dependent manner. Importantly, ferroptosis inducer IKE synergistically enhanced ES-Cu-mediated cytotoxicity both in vitro and in vivo. Of note, the combination of IKE and ES-Cu intensively impaired mitochondrial homeostasis with increased mitochondrial ROS, MMP hyperpolarized, down-regulated iron-sulfur proteins and declined oxygen consumption rate. Additionally, ES-Cu/IKE treatment could enhance the lipoylation-dependent oligomerization of the DLAT. To elucidate the specific order of events in the synergistic cell death, inhibitors of ferroptosis and cuproptosis were utilized to further characterize the basis of cell death. Cell viability assays showed that the glutathione and its precursor N-acetylcysteine could significantly rescue the cell death under either mono or combination treatment, demonstrating that GSH acts at the crossing point in the regulation network of cuproptosis and ferroptosis. Significantly, the reconstitution of xCT expression and knockdown of FDX1 cells have been found to contribute to the tolerance of mono treatment but have little recovery impact on the combined treatment. Collectively, these findings suggest that a synergistic interaction leading to the induction of multiple programmed cell death pathways could be a promising approach to enhance the effectiveness of therapy for MDS.


Subject(s)
Copper , Drug Synergism , Ferroptosis , Myelodysplastic Syndromes , Ferroptosis/drug effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology , Myelodysplastic Syndromes/metabolism , Humans , Animals , Copper/chemistry , Copper/metabolism , Piperazines/pharmacology , Mice , Cell Survival/drug effects , Imidazoles/pharmacology , Reactive Oxygen Species/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Cell Line, Tumor , Glutathione/metabolism
19.
BMC Oral Health ; 24(1): 639, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816724

ABSTRACT

BACKGROUND: Proliferative verrucous leukoplakia (PVL), distinguished by its malignant transformation rate of 43.87% to 65.8%, stands as the oral potentially malignant disorder with the highest propensity for malignancy. PVL is marked by distinctive heterogeneity regarding the clinical or histopathological characteristics as well as prognostic factors pertinent to this condition. The purpose of this study is to compile and assess the clinicopathological features, malignant transformation, and associated risk factors in patients diagnosed with PVL. METHODS: This study is a hospital-based retrospective longitudinal study of 36 patients diagnosed with PVL from 2013 to 2023. We conducted complete clinical and histopathological evaluations of the patients. RESULTS: The cohort comprised 16 males and 20 females, yielding a male-to-female ratio of 1:1.25. The follow-up period ranged from 8 to 125 months, with an average of 47.50 months. The most common clinical type of lesion was the verrucous form (58.33%), and the gingiva was the most common site (44.44%). Each patient had between 2 to 7 lesions, averaging 3.36 per patient. During the follow-up period, twelve patients (33.3%) developed oral cancer, with an average time to malignant transformation of 35.75 months. Kaplan-Meier survival analysis indicated that patients with complaints of pain, roughness, or a rough sensation, with diabetes, and the presence of cytologic atypia histologically showed a higher risk of malignant transformation (p < 0.05). In this study, the rate of malignant transformation in the treatment group (5/23) was lower than that in the untreated group (7/13), however, no statistically significant difference (p = 0.05). CONCLUSION: The main complaints of pain, roughness, or foreign body sensation, coupled with cytologic atypia histologically are indicative of an increased risk of malignant transformation in PVL. Further research is needed to elucidate the influence of these clinicopathological parameters on the malignant progression of PVL.


Subject(s)
Cell Transformation, Neoplastic , Leukoplakia, Oral , Humans , Male , Female , Leukoplakia, Oral/pathology , Cell Transformation, Neoplastic/pathology , Retrospective Studies , Middle Aged , Longitudinal Studies , Aged , Adult , Risk Factors , Mouth Neoplasms/pathology , Aged, 80 and over , Precancerous Conditions/pathology
20.
Laryngoscope ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38818872

ABSTRACT

OBJECTIVE: Observational studies suggest a potential association between sleep characteristics, sensorineural hearing loss (SNHL), and sudden SNHL (SSNHL), but causal evidence is scarce. We sought to clarify this issue using two-sample Mendelian randomization analysis. METHODS: The inverse-variance weighted (IVW) method was performed as primary analysis to assess bidirectional causal associations between sleep traits (chronotype, sleep duration, insomnia, daytime sleepiness, and snoring) and SNHL/SSNHL using publicly available Genome-Wide Association Studies summary data from two large consortia (UK Biobank and FinnGen). Sensitivity analyses, including Mendelian randomization (MR)-Egger, Mendelian randomization pleiotropy residual sum and outlier, weight median, Cochran's Q test, leave-one-out analysis, and potential pleiotropy analysis, were conducted to ensure robustness. RESULTS: IVW analysis found suggestive associations of morning chronotype (odds ratio [OR] = 1.08, 95% confidence interval [CI] = 1.01-1.16, p = 0.031) and daytime sleepiness (OR = 1.88, 95% CI = 1.24-2.87, p = 0.003) with SNHL onset. Additionally, morning chronotype was nominally associated with SSNHL onset using IVW method (OR = 1.37, 95% CI = 1.10-1.71, p = 0.006). However, there was no evidence for the causal effect of SNHL and SSNHL on different sleep traits (all p > 0.05). Sensitivity analysis showed that the results were stable. CONCLUSION: Within the MR limitations, morning chronotype and daytime sleepiness were underlying causal contributors to the burden of SNHL, indicating that optimal sleep might facilitate the prevention and development of SNHL. LEVEL OF EVIDENCE: 3 Laryngoscope, 2024.

SELECTION OF CITATIONS
SEARCH DETAIL
...