Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(4): 461-466, 2024 Apr 10.
Article in Chinese | MEDLINE | ID: mdl-38565513

ABSTRACT

OBJECTIVE: To explore the prevalence, clinical features, genetic characteristics and prognosis of Citrin deficiency in Henan province of China. METHODS: A total of 986 565 neonates screened by tandem mass spectrometry at the Third Affiliated Hospital of Zhengzhou University from January 2013 to December 2021 were retrospectively analyzed. Analysis of SLC25A13 gene variants and parental verification were carried out for neonates suspected for Citrin deficiency by next-generation sequencing. The clinical, biochemical and genetic characteristics of Citrin deficiency patients were integrated to guide the diet treatment and follow up the growth and development. Paired-t test was used to compare the amino acid levels in the peripheral blood samples before and after the treatment. RESULTS: Nine cases of Citrin deficiency were diagnosed among the 986 565 neonates. Specific elevation of citrulline was observed in all of the 9 cases. Six variants were detected by genetic sequencing, among which c.852_855delTATG, c.615+5G>A, c.550C>T and IVS16ins3kb were known pathogenic variants, whilst c.1111_1112delAT and c.837T>A were unreported previously. The detection rate for c. 852_855delTATG was the highest (61.6%, 11/18), followed by IVS16ins3kb (16.7%, 3/18). The clinical symptoms of all patients were relieved after the treatment, and the blood amino acid profile and biochemical parameters were significantly improved by gradually falling within the normal range. By June 2022, all patients had shown a good prognosis. CONCLUSION: The prevalence of Citrin deficiency among neonates from Henan Province by tandem mass spectrometry is 1/109 618, and the carrier rate for the pathogenic variants of the SLC25A13 gene was 1/166. The c.852_855delTATG may be a hot spot variant among the patients. Discovery of the novel variants has enriched the mutational spectrum of the SLC25A13 gene. Above results have provided a basis for the early diagnosis, treatment, prognosis and genetic counseling for the affected families.


Subject(s)
Citrullinemia , Neonatal Screening , Infant, Newborn , Humans , Neonatal Screening/methods , Citrullinemia/diagnosis , Citrullinemia/genetics , Retrospective Studies , Mutation , Citrulline , Mitochondrial Membrane Transport Proteins/genetics
2.
Nano Lett ; 24(4): 1268-1276, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38241736

ABSTRACT

While quasi-two-dimensional (quasi-2D) perovskites have good properties of cascade energy transfer, high exciton binding energy, and high quantum efficiency, which will benefit high-efficiency blue PeLEDs, inefficient domain distribution management and unbalanced carrier transport impede device performance improvement. Herein, (2-(9H-carbazol-9-yl)ethyl)phosphonic acid (2PACz) and methyl 2-aminopyridine-4-carboxylate (MAC) were simultaneously introduced to a blue quasi-2D perovskite film. Relying on the synergistic effect of 2PACz and MAC, it not only modulates the phase distribution inhibiting the n = 2 phase but also greatly improves the electrical property of the quasi-2D perovskite film. As a result, the as-modified blue quasi-2D PeLED demonstrated an external quantum efficiency (EQE) of 17.08% and a luminance of 10142 cd m-2. This study exemplifies the synergistic effect among dual additives and offers a new effective additive strategy modulating phase distribution and building balanced carrier transport, which paves the way for the fabrication of highly efficient blue PeLEDs.

3.
Angew Chem Int Ed Engl ; 63(9): e202317376, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38229423

ABSTRACT

Although colloidal perovskite nanocrystal (PNC) solution has exhibited near-unity photoluminescence quantum yield (PLQY), the luminance would be severely quenched when the PNC solution is assembled into thin films due to the agglomeration and fusion of NCs caused by the exfoliation of surface ligands and non-radiative Förster resonance energy transfer (FRET) from small to large particle sizes, which seriously affected the performances of light-emitting diodes (LEDs). Here, we used Guanidine thiocyanate (GASCN) and Sodium thiocyanate (NaSCN) to achieve effective CsPbI3 PNC surface reconstruction. Due to the strong coordination ability of these small molecules with the anions and cations on the surface of the PNCs, they can provide strong surface protection against PNC fusion during centrifugal purification process and repair the surface defects of PNCs, so that the original uniform size distribution of PNCs can be maintained and FRET between close-packed PNC films is effectively suppressed, which allows the emission characteristics of the films to be preserved. As a result, highly oriented, smooth and nearly defect-free high-quality PNC thin films are obtained, with PLQY as high as 95.1 %, far exceeding that of the original film, and corresponding LEDs exhibit a maximum external quantum efficiency of 24.5 %.

4.
Angew Chem Int Ed Engl ; 63(5): e202317393, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38062863

ABSTRACT

Organic electrode materials have attracted a lot interest in batteries in recent years. However, most of them still suffer from low performance such as low electrode potential, slow reaction kinetics, and short cycle life. In this work, we report a strategy of fabricating donor-acceptor (D-A) conjugated polymers for facilitating the charge transfer and therefore accelerating the reaction kinetics by using the copolymer (p-TTPZ) of dihydrophenazine (PZ) and thianthrene (TT) as a proof-of-concept. The D-A conjugated polymer as p-type cathode could store anions and exhibited high discharge voltages (two plateaus at 3.82 V, 3.16 V respectively), a reversible capacity of 152 mAh g-1 at 0.1 A g-1 , excellent rate performance with a high capacity of 124.2 mAh g-1 at 10 A g-1 (≈50 C) and remarkable cyclability. The performance, especially the rate capability was much higher than that of its counterpart homopolymers without D-A structure. As a result, the p-TTPZ//graphite full cells showed a high output voltage (3.26 V), a discharge specific capacity of 139.1 mAh g-1 at 0.05 A g-1 and excellent rate performance. This work provides a novel strategy for developing high performance organic electrode materials through molecular design and will pave a way towards high energy density organic batteries.

5.
Nano Lett ; 23(23): 11082-11090, 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-37991828

ABSTRACT

Quasi-2D perovskites, multiquantum well materials with the energy cascade structure, exhibit impressive optoelectronic properties and a wide range of applications in various optoelectronic devices. However, the insufficient exciton energy transfer caused by the excess of small-n phases that induce nonradiative recombination and the spatially random phase distribution that impedes charge transport severely inhibit the device performance of light-emitting diodes (LEDs). Here, a faster energy transfer process and efficient carrier recombination are achieved by introducing the multifunctional additive 2-(methylsulfonyl)-4-(trifluoromethyl)benzoic acid (MTA) to manipulate the crystallization process of perovskites. The introduction of MTA not only constrains the PEA and restrains the formation of small-n phases to improve the energy transfer process but also optimizes the crystal orientation to promote charge transport. As a result, highly efficient pure green quasi-2D perovskite LEDs with a peak EQE of 25.9%, a peak current efficiency of 108.1 cd A-1, and a maximum luminance of 288798 cd m-2 are achieved.

6.
ACS Appl Mater Interfaces ; 15(40): 47278-47285, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37774397

ABSTRACT

Perovskite nanocrystals have been widely applied in the field of light-emitting diodes (LEDs) due to their excellent optoelectronic properties. However, there is generally a serious degradation of device efficiency when transferring the device from rigid to flexible substrates due to the high roughness, poor wettability, and low endurance temperature of flexible substrates. Herein, a highly flexible perovskite light-emitting diode (PeLED) by utilizing label paper as substrates and poly(methyl methacrylate) (PMMA) as the modified layer was reported. Compared with the reference device based on commonly used polyethylene terephthalate (PET) substrates, the label paper/PMMA-based devices did not show the degraded device performance when transferring from rigid to flexible substrates. This is mainly because of low roughness and good wettability of PMMA-modified label paper, which significantly improve the film-forming ability of the bottom electrode and functional layer. Furthermore, the flexibility of both devices was explored by a three-point bending flexural test, indicating that the label paper-based device has better bending stability than the polyethylene terephthalate-based one due to the lower flexural modulus for label paper. As a result, the label paper-based flexible PeLEDs exhibited the highest external quantum efficiency (EQE) of 14.3% among perovskite nanocrystal-based flexible LEDs and preeminent flexibility with 29% luminance degradation after bending for 1000 cycles at a small radius of 1.5 mm. This extension of the substrate to paper will widen the opportunity of PeLEDs in extremely flexible and inexpensive applications.

7.
Light Sci Appl ; 12(1): 215, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37666825

ABSTRACT

Considering the multi-functionalization of ligands, it is crucial for ligand molecular design to reveal the landscape of anchoring sites. Here, a typical triphenylphosphine (TPP) ligand was employed to explore its effect on the surface of CsPbI3 perovskite nanocrystals (PNCs). Except for the conventionally considered P-Pb coordination, an P-I supramolecular halogen bonding was also found on the NC surface. The coexistence of the above two types of bonding significantly increased the formation energy of iodine vacancy defects and improved the photoluminescence quantum yield of PNCs up to 93%. Meanwhile, the direct interaction of P and I enhanced the stability of the Pb-I octahedra and dramatically inhibited the migration of I ions. Furthermore, the introduction of additional benzene rings (2-(Diphenylphosphino)-biphenyl (DPB)) increased the delocalized properties of the PNC surface and significantly improved the charge transport of the PNCs. As a result, the DPB passivated CsPbI3 NCs based top-emitting LEDs exhibite a peak external quantum efficiency (EQE) of 22.8%, a maximum luminance of 15, 204 cd m-2, and an extremely low-efficiency roll-off of 2.6% at the current density of 500 mA cm-2.

8.
Small ; 19(42): e2302337, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37344988

ABSTRACT

Perovskite solar cells (PSCs) based on 2D/3D composite structure have shown enormous potential to combine high efficiency of 3D perovskite with high stability of 2D perovskite. However, there are still substantial non-radiative losses produced from trap states at grain boundaries or on the surface of conventional 2D/3D composite structure perovskite film, which limits device performance and stability. In this work, a multifunctional magnetic field-assisted interfacial embedding strategy is developed to construct 2D/3D composite structure. The composite structure not only improves crystallinity and passivates defects of perovskite layer, but also can efficiently promote vertical hole transport and provide lateral barrier effect. Meanwhile, the composite structure also forms a good surface and internal encapsulation of 3D perovskite to inhibit water diffusion. As a result, the multifunctional effect effectively improves open-circuit voltage and fill factor, reaching maximum values of 1.246 V and 81.36%, respectively, and finally achieves power conversion efficiency (PCE) of 24.21%. The unencapsulated devices also demonstrate highly improved long-term stability and humidity stability. Furthermore, an augmented performance of 21.23% is achieved, which is the highest PCE of flexible device based on 2D/3D composite perovskite films coupled with the best mechanical stability due to the 2D/3D alternating structure.

9.
Opt Express ; 31(8): 13028-13039, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37157449

ABSTRACT

A driver safety assisting system is essential to reduce the probability of traffic accidents. But most of the existing driver safety assisting systems are simple reminders that cannot improve the driver's driving status. This paper proposes a driver safety assisting system to reduce the driver's fatigue degree by the light with different wavelengths that affect people's moods. The system consists of a camera, an image processing chip, an algorithm processing chip, and an adjustment module based on quantum dot LEDs (QLEDs). Through this intelligent atmosphere lamp system, the experimental results show that blue light reduced the driver's fatigue degree when just turned on; but as time went on, the driver's fatigue degree rebounded rapidly. Meanwhile, red light prolonged the driver's awake time. Different from blue light alone, this effect can remain stable for a long time. Based on these observations, an algorith was designed to quantify the degree of fatigue and detect its rising trend. In the early stage, the red light is used to prolong the awake time and the blue light to suppress when the fatigue value increases, so as to maximize the awake driving time. The result showed that our device prolonged the awake driving time of the drivers by 1.95 times and reduced fatigue during driving: the quantitative value of fatigue degree generally decreased by about 0.2 times. In most experiments, the subjects were able to complete four hours of safe driving, which reached the maximum length of continuous driving at night allowed by China laws. In conclusion, our system changes the assisting system from a reminder to a helper, thus effectively reducing the driving risk.

10.
Adv Sci (Weinh) ; 10(20): e2207571, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37114798

ABSTRACT

Most lead-free halide double perovskite materials display low photoluminescence quantum yield (PLQY) due to the indirect bandgap or forbidden transition. Doping is an effective strategy to tailor the optical properties of materials. Herein, efficient blue-emitting Sb3+ -doped Cs2 NaInCl6 nanocrystals (NCs) are selected as host, rare-earth (RE) ions (Sm3+ , Eu3+ , Tb3+ , and Dy3+ ) are incorporated into the host, and excellent PLQY of 80.1% is obtained. Femtosecond transient absorption measurement found that RE ions not only served as the activator ions but also filled the deep vacancy defects. Anti-counterfeiting, optical thermometry, and white-light-emitting diodes (WLEDs) are exhibited using these RE ions-doped halide double perovskite NCs. For the optical thermometry based on Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs, the maximum relative sensitivity is 0.753% K-1 , which is higher than those of most temperature-sensing materials. Moreover, the WLED fabricated by Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs@PMMA displays CIE color coordinates of (0.30, 0.28), a luminous efficiency of 37.5 lm W-1 , a CCT of 8035 K, and a CRI over 80, which indicate that Sm3+ -doped Cs2 NaInCl6 :Sb3+ NCs are promising single-component white-light-emitting phosphors for next-generation lighting and display technologies.

11.
Adv Mater ; 35(51): e2211088, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36988940

ABSTRACT

It has always been a goal to realize high efficiency and broadband emission in single-component materials. The appearance of metal halide perovskites makes it possible. Their soft lattice characteristics and significant electron-phonon coupling synergistically generate self-trapped excitons (STEs), contributing to a broadband emission with a large Stokes shift. Meanwhile, their structural/compositional diversity provides suitable active sites and coordination environments for doping of ns2 ions, allowing 3 Pn ( n =0,1,2) →1 S0 transitions toward broadband emission. The ns2 ions emission is phenomenologically similar to that of STE emission, hindering in-depth understanding of their emission origin, and leading to failure to meet the design requirements for practical applications. In this scenario, herein, the fundamentals and development of such two emission mechanisms are summarized to establish a clear and comprehensive understanding of the broadband emission phenomenon, which may pave the way to an ideal customization of broadband-emission metal halide perovskites.

12.
Angew Chem Int Ed Engl ; 62(27): e202302539, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-36988031

ABSTRACT

Redox organic electrode materials (OEMs) have attracted extensive attention for batteries due to the possibility to be designed with high performance. However, the practical application of OEMs requires rigor criteria such as low cost, recyclability, scalability and high performance etc. and hence seems still far away. Here, we demonstrate an OEM for high performance aqueous organic batteries. Quantification of the charge storage confirmed the storage of protons with fast reaction kinetics, thereby enabling the high performance at high mass loading. As a result, the laminated pouch cells delivered Ampere-hour-scale capacity with excellent cycling performance. Benefited from the small molecular nature and the stable both charged and discharged states, the electrodes can be recycled at any states of charge with high yields (more than 90 %). This work provides a substantial step in the practical applications of OEMs for the future sustainable batteries.

13.
Angew Chem Int Ed Engl ; 62(14): e202217832, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-36760216

ABSTRACT

Wide-coverage near infrared (NIR) phosphor-converted LEDs possess promising potential for practical applications, but little is developed towards the efficient and wide-coverage NIR phosphors. Here, we report the single-component lanthanide (Ln3+ ) ions doped Cs2 M(In0.95 Sb0.05 )Cl6 (M=alkali metal) nanocrystals (NCs), exhibiting emission from 850 to 1650 nm with high photoluminescence quantum yield of 20.3 %, which is accomplished by shaping the multiple metal halide octahedra of double perovskite via the simple alkali metal substitution. From Judd-Ofelt theoretical calculation and spectroscopic investigations, the shaping of metal halide octahedra in Cs2 M(In1-x Sbx )Cl6 NCs can break the forbidden of f-f transition of Ln3+ , thus increasing their radiative transition rates and simultaneously boosting the energy transfer efficiency from host to Ln3+ . Finally, the wide-coverage NIR LEDs based on Sm3+ , Nd3+ , Er3+ -tridoped Cs2 K0.5 Rb0.5 (In0.95 Sb0.05 )Cl6 NCs are fabricated and employed in the multiplex gas sensing and night-vision application.

14.
Nano Lett ; 23(4): 1582-1590, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36763855

ABSTRACT

Properties of the underlying hole transport layer (HTL) play a crucial role in determining the optoelectronic performance of perovskite light-emitting devices (PeLEDs). However, endowing the current HTL system with a deep highest occupied molecular orbital (HOMO) level concurrent with high hole mobility is still a big challenge, in particular being an open constraint toward high-efficiency blue PeLEDs. In this regard, employing the poly(9-vinylcarbazole) as a model, we perform efficient incorporation of the atomic-precision metal nanoclusters (NCs), [Ag6PL6, PL = (S)-4-phenylthiazolidine-2-thione], to achieve significant tailoring in both HOMO energy level and hole mobility. As a result, the as-modified PeLEDs exhibit an external quantum efficiency (EQE) of 14.29% at 488 nm. The presented study exemplifies the success of metal NC involved HTL engineering and offers a simple yet effective additive strategy to settle the blue PeLED HTL dilemma, which paves the way for the fabrication of highly efficient blue PeLEDs.

15.
Clin Chim Acta ; 539: 90-96, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36516925

ABSTRACT

BACKGROUND: Duchenne Muscular Dystrophy (DMD) is a rare disorder caused by mutations in the dystrophin gene. Recent availability in treatment for DMD raised the need of early screening in our center, but newborn screening (NBS) for DMD has not been carried out in Henan Province. OBJECTIVES: To determine an optimal cutoff value through the quantitative determination of the creatine kinase isoform MM (CK-MM) concentration dried blood spot (DBS) to identify male DMD, and to evaluate assess the detection rate and mutation spectrum of DMD in Henan, China. METHODS: The CK-MM level in DBS was measured using with a GSP® neonatal creatine kinase -MM kit from 13,110 male newborns to establish the cut-off value for CK-MM. Multiplex ligation-dependent probe amplification (MLPA) were carried out for infants with elevated CK levels to detect DMD gene deletions/ duplications, NGS and sanger sequencing were then applied to exclude MLPA-negative samples to single-nucleotide variants. Phenotype-genotype correlations were analyzed using REVEL For novel missense mutations. RESULTS: Statistical analysis of CK-MM value of the 13,110 neonates suggested that the cut-off value may be set as 472 ng/mL. 3 cases of DMD were screened among 13,110 newborns, all of whom had CK-MM levels >600 ng/mL. We detected 4 rare variants in DMD gene, including 2 exon deletions (deletion of exon 52 and deletion from exon 3 to exon 7) and 2 point variants (c.9568C>T and c.4030C>T). Two cases were all exon deletions, one case was compound heterozygous variants. CONCLUSIONS: The estimated incidence of male neonatal DMD was 1:4,370 in Henan province. NBS is of great value to the early intervention and treatment of the disease, and is fundamental to support public health decision-making. The experience from this study provided a model that will allow further expansion and facilitate establishment a universal public health screening in Henan hospital systems.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Infant, Newborn , Male , Muscular Dystrophy, Duchenne/diagnosis , Muscular Dystrophy, Duchenne/genetics , Neonatal Screening , Dystrophin/genetics , Mutation , Genomics , China , Gene Deletion
16.
Chem Commun (Camb) ; 58(85): 11993-11996, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36217964

ABSTRACT

Redox-active organic materials have shown great potential as electrodes in lithium-ion batteries (LIBs). However, most of them showed a low discharge potential. We report a thianthrene-based small molecule (BDBDT), which could be facilely synthesized, as a high-potential cathode. The BDBDT cathode exhibited good electrochemical performance with a discharge plateau at 3.9 V (vs. Li/Li+) and a discharge capacity of 63 mA h g-1 after 100 cycles at 500 mA g-1 (∼10C). Our results demonstrate that thianthrene-based molecules are promising for the development of high-potential organic electrodes towards rechargeable batteries with high energy and power density.

17.
Adv Mater ; 34(43): e2207445, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36094887

ABSTRACT

Quasi-2D perovskites have emerged as a promising luminescent material for perovskite light-emitting diodes (Pe-LEDs). However, efficiency and stability are still obstacles to practical application due to numerous defects and inefficient energy transfer of perovskite films. Herein, functional phenethylammonium bromine-modified CsPbBr3 nanocrystals (PEA-CsPbBr3 NCs) are first introduced as multifunctional additive to simultaneously improve abovementioned problems. PEA-CsPbBr3 NCs not only serve as heteronuclear seeds and trigger growth, thus greatly reducing leakage current, but also deliver Cs+ and Br- to passivate the intrinsic defects inside film. More importantly, the PEA-CsPbBr3 construct a new carrier-transfer pathway from the small-n phase of the quasi-2D perovskite to the PEA-CsPbBr3 , which not only accelerates the energy-transfer process but also promotes radiation recombination of carriers due to stronger quantum confinement effect. Afterward, the poly(3,4-ethylenedioxythiophene):polystyrene sulfonate/poly[9,9-dioctylfluoreneco-N-[4-(3-methylpropyl)]diphenylamine]:black phosphorus quantum dot double hole-transport layer is successfully constructed to enhance its carrier-injection and charge-transport abilities. Consequently, a champion external quantum efficiency of 25.32% and maximal brightness of 128 842 cd m-2 are achieved, which is the record efficiency of the quasi-2D Pe-LED with pure green emission at 530 nm. Moreover, an impressive 174 min lifetime is obtained at T50 , which is about five times longer than the control device.

18.
Adv Mater ; 34(52): e2200662, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35364614

ABSTRACT

Rechargeable organic multivalent metal-ion batteries (MMIBs) have attracted a surge of interest as promising alternatives for large-scale energy storage applications because they can combine the advantages of both organic electrodes and multivalent metal-ion batteries. However, the development of organic MMIBs is hampered by many factors, which mean they lag far behind organic alkali-metal- (e.g., Li-, Na-, and K-) ion batteries. Herein, the challenges that are specifically faced by organic MMIBs are analyzed and the strategies that can probably solve such challenges are then discussed. As a special challenge that organic MMIBs are facing, the charge-storage mechanism is particularly underlined to deeply understand the structure-property relationships for guiding the future design of high-performance organic electrodes for MMIBs. The perspectives are thereby elaborated in this review with the outlook of practical applications of organic MMIBs.

19.
Angew Chem Int Ed Engl ; 61(37): e202116289, 2022 Sep 12.
Article in English | MEDLINE | ID: mdl-35005819

ABSTRACT

Aqueous zinc-ion batteries (ZIBs) are promising for next-generation energy storage. However, the reported electrode materials for ZIBs are facing shortcomings including low capacity and unsatisfactory cycling stability etc. Herein, hexaazatrinaphthalene-quione (HATNQ) is reported for aqueous ZIBs. The HATNQ electrodes delivered an ultrahigh capacity (482.5 mAh g-1 at 0.2 A g-1 ) and outstanding cyclability of >10 000 cycles at 5 A g-1 . The capacity sets a new record for organic cathodes in aqueous ZIBs. The high performances are ascribed to the rich C=O and C=N groups that endowed HATNQ with a 2D layered supramolecular structure by multiple hydrogen bonds in plane with π-π interactions out-of-plane, leading to enhanced charge transfer, insolubility, and rapid ion transport for fast-charge and -discharge batteries. Moreover, the 2D supramolecular structure boosted the storage of Zn2+ /H+ , particularly the storage of Zn2+ , due to the more favorable O⋅⋅⋅Zn⋅⋅⋅N coordination in HATNQ.

20.
ACS Appl Mater Interfaces ; 13(9): 10822-10836, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33629583

ABSTRACT

The preferred orientation of crystalline films in hybrid perovskite materials is known to influence the performance of perovskite solar cells (PSCs). Although the preferred growth along the (112) directions has been reported to promote charge transport within the Pb-based polycrystalline perovskite films, the preferred orientation growth of this facet is still difficult to be achieved due to the higher formation energy compared with the (110) plane. Herein, Sn-Pb binary perovskite films with a well-controlled orientation along the (224) plane were achieved by introducing a simple ultrasonic treatment (UST) into the additive engineering fabricated method. UST is used to process the perovskite precursor solutions of tartaric acid (TA) modified Sn-Pb binary polycrystalline perovskite films to regulate the interactions between PbI2/SnI2 and TA in the intermediate phases. Meanwhile, TA-modulated MA0.9Cs0.1Pb0.75Sn0.25I3-based perovskite films with a preferred orientation of (224) crystal plane were obtained by precisely controlling the UST time to 15 min. The highest power conversion efficiency (PCE) of 15.59% with less hysteresis and improved stability was achieved, while realizing 8.64 and 25.32% enhancements of PCE compared with that of TA-based and control counterparts with (110) preferred orientation, respectively. Our work provides a promising route to obtain preferred orientation growth of polycrystalline perovskite films. In particular, we have shown that this approach improves the performance of Sn-Pb binary PSCs, while such methodology is quite flexible and could also be applied to other low-/non-toxic PSCs.

SELECTION OF CITATIONS
SEARCH DETAIL
...