Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
2.
Front Public Health ; 12: 1047769, 2024.
Article in English | MEDLINE | ID: mdl-38784588

ABSTRACT

Background: A patient-centered dialysis treatment option requires an understanding of patient preferences for alternative vascular accesses and nephrologists often face difficulties when recommending vascular access to end-stage kidney disease (ESKD) patients. We aimed to quantify the relative importance of various vascular access characteristics to patients, healthcare providers and general population, and how they affect acceptability for patients and healthcare providers. Methods: In a discrete choice experiment, patients with maintenance hemodialysis (MHD), healthcare providers, and individuals from the general population were invited to respond to a series of hypothetical vascular access scenarios that differed in five attributes: cumulative patency, infection rate, thrombosis rate, cost, and time to maturation. We estimated the respondents' preference heterogeneity and relative importance of the attributes with a mixed logit model (MXL) and predicted the willingness to pay (WTP) of respondents via a multinomial logit model (MNL). Results: Healthcare providers (n = 316) and the general population (n = 268) exhibited a favorable inclination toward longer cumulative patency, lower access infection rate and lower access thrombosis rate. In contrast, the patients (n = 253) showed a preference for a 3-year cumulative patency, 8% access infection rate, 35% access thrombosis rate and 1.5 access maturity time, with only the 3-year cumulative patency reaching statistical significance. Among the three respondent groups, the general population found cumulative patency less important than healthcare providers and patients did. Patients demonstrated the highest WTP for cumulative patency, indicating a willingness to pay an extra RMB$24,720(US$3,708) for each additional year of patency time. Conclusion: Patients and healthcare providers had a strong preference for vascular access with superior patency. While the general population preferred vascular access with lower thrombosis rates. These results indicate that most patients prefer autogenous arteriovenous fistula (AVF) as an appropriate choice for vascular access due to its superior patency and lower complications than other vascular access types.


Subject(s)
Kidney Failure, Chronic , Patient Preference , Renal Dialysis , Humans , Male , Female , Patient Preference/statistics & numerical data , Middle Aged , Kidney Failure, Chronic/therapy , Aged , Health Personnel/statistics & numerical data , Adult , Choice Behavior , Surveys and Questionnaires , Arteriovenous Shunt, Surgical , Vascular Patency
4.
ACS Appl Mater Interfaces ; 16(17): 22248-22255, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38626353

ABSTRACT

The massive use of paper has resulted in significant negative impacts on the environment. Fortunately, recent progress has been made in the field of rewritable paper, which has great potential in solving the increasing demand for paper while minimizing its environmental footprint. In this work, we report a green and economic strategy to develop ink-free rewritable paper by introducing hydrochromic covalent organic frameworks (COFs) in paper and using water as the sole trigger. When exposed to water or acidic solvents, two kinds of imino COFs change their colors reversibly from red to black. Additionally, a new visible absorption band appears, indicating that it can be transformed into another structure reversibly. This reversibility may be due to the isomerization from the diiminol to an iminol/cisketoenamine and its inability to doubly tautomerize to a diketoenamine. Specifically, we prepared the rewritable paper by loading these two COFs onto filter paper by using the decompression filtration method. When exposed to water, the paper undergoes a color change from red to black, which shows promising potential for applications in water-jet printing. Additionally, there is no significant performance degradation after 20 uses and 10 days between, further highlighting their potential as rewritable papers. To further improve its uniformity, we take the interface polymerization strategy to yield highly crystalline and more compact membranes, which are then transferred to paper to prepare writable papers. Our research has opened up a way for the application of COFs as a water-based printing material.

5.
Sci Rep ; 14(1): 8101, 2024 04 06.
Article in English | MEDLINE | ID: mdl-38582868

ABSTRACT

Our objective in this study is to determine whether intra-articular injection of miRNA-1 can attenuate the progression of OA in rats by down regulating Ihh. Knee chondrocytes were isolated from male Sprague-Dawley rats aged 2-3 days. Second-generation chondrocytes were transfected with miR-1 mimic and empty vector with lipo3000 for 6 h and then stimulated with 10 ng/mL IL-1ß for 24 h. OA-related and cartilage matrix genes were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Two-month-old male Sprague-Dawley rats were divided into three groups (n = 30?): sham operation group + 50 µL saline, anterior cruciate ligament transection (ACLT) group + 50 µL miR-1 agomir (concentration), and control group ACLT + 50 µL miR-1 agomir. Treatment was started one week after the operation. All animals were euthanized eight weeks after the operation. X-rays and micro-CT were used to detect imaging changes in the knee joints. FMT was used to monitor joint inflammation in vivo. Safranin O staining was used to detect morphological changes in articular cartilage. Immunohistochemistry was used to detect Col2, Col10, metalloproteinase-13 (MMP-13). RT-qPCR was used to detect gene changes includingmiR-1, Col2, Col10, MMP-13, Ihh, Smo, Gli1, Gli2, and Gli3. Overexpression of miR-1 in IL-1ß-stimulated chondrocytes reduced the levels of Ihh, MMP-13, and Col10 but increased the levels of Col2 and aggrecan. Intra-articular injection of miR-1 agomir reduced osteophyte formation, inflammation, and prevented cartilage damage. RT-qPCR results indicated that the miR-1 agomir increased articular cartilage anabolism and inhibited cartilage catabonism. miR-1 can attenuate the progression of OA by downregulating Ihh.


Subject(s)
Cartilage, Articular , MicroRNAs , Osteoarthritis , Rats , Male , Animals , Hedgehog Proteins , MicroRNAs/genetics , MicroRNAs/therapeutic use , Rats, Sprague-Dawley , Matrix Metalloproteinase 13/genetics , Osteoarthritis/drug therapy , Osteoarthritis/genetics , Chondrocytes , Injections, Intra-Articular , Inflammation , Disease Models, Animal
6.
ACS Appl Mater Interfaces ; 16(12): 15096-15106, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38478831

ABSTRACT

With the progress of forgery and decryption, the traditional encryption technology is apparent not enough, which strongly requires the development of advanced multidimensional encryption strategies and technologies. Photo-stimuli responsive fluorescent materials are promising as candidate materials for advanced information encryption. Here, we have reported new photo-stimuli responsive materials by encapsulating photochromic molecules spiropyrans (SPs) into naphthalimide-functionalized silica aerogels. By introducing different modification groups (dimethylamino) into 1,8-naphthalimide, we obtained two kinds of silica aerogels that emit blue and green colors. The naphthalimide-functionalized silica aerogels/dye composite exhibits a blue (dimethylamino-modified naphthalimide-functionalized silica aerogel showing green) emission from naphthalimide of silica aerogels at 450 nm (520 nm) and a red emission around 650 nm of SP. Under exposure to ultraviolet light, SP gradually transformed into the merocyanine (MC) form, and a strong absorption band appeared near 540 nm. At that time, the fluorescence resonance energy-transfer (FRET) process occurred between naphthalimide and the MC isomer. As the irradiation time is extended, the fluorescence color changes continuously from blue (green) to red through the FRET process. Using the time dependence of fluorescence, dynamic encryption patterns and multiple codes were successfully developed based on these functionalized silica aerogels. This work has provided important guidance for designing advanced information encryption materials.

7.
J Toxicol Environ Health A ; 87(10): 428-435, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38551404

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease associated with long non-coding RNAs and DNA methylation; however, the mechanisms underlying the role of lncRNA small nucleolar RNA host gene 1 (lncRNA SNHG1) and subsequent involvement of DNA methylation in AD development are not known. The aim of this study was to examine the regulatory mechanisms attributed to lncRNA SNHG1 gene utilizing 2 strains of senescence-accelerated mouse prone 8 (SAMP8) model of AD and compared to senescence-accelerated mouse resistant (SAMR) considered a control. Both strains of the mouse were transfected with either blank virus, psLenti-U6-SNHG1(low gene expression) virus, and psLenti-pA-SNHG1(gene overexpression) virus via a single injection into the brains for 2 weeks. At 2 weeks mice were subjected to a Morris water maze to determine any behavioral effects followed by sacrifice to extract hippocampal tissue for Western blotting to measure protein expression of p-tau, DNMT1, DNMT3A, DNMT3B, TET1, and p-Akt. No marked alterations were noted in any parameters following blank virus transfection. In SAMP8 mice, a significant decrease was noted in protein expression of DNMT1, DNMT3A, DNMT3B, and p-Akt associated with rise in p-tau and TET1. Transfection with ps-Lenti-U6-SNHG1 alone in SAMR1 mice resulted in a significant rise in DNMTs and p-Akt and a fall in p-tau and TET1. Transfection of SAMP8 with ps-Lenti-U6-SNHG1 blocked effects on overexpression noted in this mouse strain. However, knockdown of lncRNA SNHG1 yielded the opposite results as found in SAMR1 mice. In conclusion, the knockdown of lncRNA SNHG1 enhanced DNA methylation through the PI3K/Akt signaling pathway, thereby reducing the phosphorylation levels of tau in SAMP8 AD model mice with ameliorating brain damage attributed to p-tau accumulation with consequent neuroprotection.


Subject(s)
Alzheimer Disease , Neurodegenerative Diseases , RNA, Long Noncoding , Mice , Animals , Alzheimer Disease/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , DNA Methylation , Proto-Oncogene Proteins c-akt/metabolism , Neurodegenerative Diseases/genetics , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism
8.
J Colloid Interface Sci ; 665: 545-553, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547635

ABSTRACT

Organic multi-stimulus-responsive materials are widely used in anti-counterfeiting and information encryption due to their unique response characteristics and designability. However, progress in obtaining multi-stimulus-responsive smart materials has been very slow. Herein, a spiropyran derivative is constructed, which shows photochromic, thermochromic and mechanical photochromic properties, and has reversible absorption/luminescence adjustment ability. By introducing non-covalent interactions such as van der Waals force and hydrogen bond, this new molecule is more sensitive to external stimuli and exhibits better photochromic, mechanochromic and thermochromic properties with rapid speed and high contrast. Furthermore, these three stimulus responses can be completely restored to the initial state under white light irradiation. The reversible multiple response characteristics of this molecule make it possible to provide dynamic anti-counterfeiting and advanced information encryption capabilities. To demonstrate its application in advanced information encryption, powders treated with different stimuli are combined with fluorescent dyes to encrypt complex digital information. This work puts forward a new time-resolved encryption strategy, which provides important guidance for the development of time-resolved information security materials.

9.
J Ethnopharmacol ; 324: 117791, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38301987

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Salvia miltiorrhiza Bunge is a kind of Chinese herbal medicine known for activating blood circulation and removing blood stasis, with the effect of cooling blood and eliminating carbuncles, and has been proven to have the effect of treating tumors. However, the inhibitory effect of Salvia miltiorrhiza Bunge extracts (Diterpenoid tanshinones) on tumors by inhibiting angiogenesis has not been studied in detail. AIM OF THE STUDY: This study aimed to investigate the anti-gastric cancer effect of diterpenoid tanshinones (DT) on angiogenesis, including the therapeutic effects and pathways. MATERIALS AND METHODS: This experiment utilized network pharmacology was used to identify relevant targets and pathways of Salvia miltiorrhiza Bunge-related components in the treatment of gastric cancer. The effects of DT on the proliferation and migration of human gastric cancer cell line SGC-7901 and human umbilical vein endothelial cell line HUVECs were evaluated, and changes in the expression of angiogenesis-related factors were measured. In vivo, experiments were conducted on nude mice to determine tumor activity, size, immunohistochemistry, and related proteins. RESULTS: The findings showed that DT could inhibit the development of gastric cancer by suppressing the proliferation of gastric cancer cells, inducing apoptosis, and inhibiting invasion and metastasis. In addition, the content of angiogenesis-related factors and proteins was significantly altered in DT-affected cells and animals. CONCLUSIONS: Results suggest that DT has potential as a therapeutic agent for the treatment of gastric cancer, as it can inhibit tumor growth and angiogenesis. It was also found that DT may affect the expression of the angiogenic factor VEGF through the PI3K/Akt/mTOR pathway, leading to the regulation of tumor angiogenesis. This study provides a new approach to the development of anti-tumor agents and has significant theoretical and clinical implications for the treatment of gastric cancer.


Subject(s)
Abietanes , Diterpenes , Salvia miltiorrhiza , Stomach Neoplasms , Animals , Mice , Humans , Stomach Neoplasms/drug therapy , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Mice, Nude , Angiogenesis , TOR Serine-Threonine Kinases , Signal Transduction , Diterpenes/pharmacology , Diterpenes/therapeutic use , Salvia miltiorrhiza/chemistry
10.
ACS Appl Mater Interfaces ; 16(10): 12188-12201, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38288981

ABSTRACT

Myocardial infarction (MI) is the leading cause of death worldwide. The most effective way to treat myocardial infarction is to rescue ischemic cardiomyocytes. After an ischemic event, the overproduction of reactive oxygen species (ROS) is a key driver of myocardial injury. The produced ROS affects mitochondrial function and induces apoptosis in cardiomyocytes. This was accomplished by constructing platelet-membrane-encapsulated ROS-responsive drug-releasing nanoparticles (PMN@NIC-MalNPs) to deliver malonate and niclosamide (NIC). The results revealed that PMN@NIC-MalNPs degraded and released malonate and niclosamide in a high-level ROS microenvironment, effectively reducing the oxidative stress and apoptosis rate. By enhancing basal mitochondrial oxygen consumption rate (OCR), adenosine triphosphate (ATP) production, and spare respiratory capacity (SRC) in vitro, reduced the oxidative stress levels and restored mitochondrial function. In vivo studies revealed that the PMN@NIC-MalNPs improved cardiac dysfunction, inhibited succinate dehydrogenase (SDH) activity, increased ATP production, and reduced the myocardial infarct size in myocardial infarction model mice. Further, transcriptome analysis and Western blot revealed that PMN@NIC-MalNPs prevented apoptosis by activating the expressions of the signal transducer and activator of transcription 3 (STAT3) and Bcl-2, and inhibiting the expression of Bax. Thus, this study provides a novel therapeutic solution for treating myocardial infarction and predicting the viability of an antioxidant and antiapoptotic therapeutic solution in the treatment of myocardial injury.


Subject(s)
Myocardial Infarction , STAT3 Transcription Factor , Mice , Animals , Reactive Oxygen Species/metabolism , Niclosamide/metabolism , Niclosamide/pharmacology , Niclosamide/therapeutic use , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Oxidative Stress , Adenosine Triphosphate/metabolism , Malonates/metabolism , Malonates/pharmacology , Malonates/therapeutic use , Apoptosis
11.
Adv Healthc Mater ; 13(8): e2303101, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38174837

ABSTRACT

Ischemia-induced myocardial injury has become a serious threat to human health, and its treatment remains a challenge. The occurrence of ischemic events leads to a burst release of reactive oxygen species (ROS), which triggers extensive oxidative damage and leads to dysfunctional autophagy, making it difficult for cells to maintain homeostasis. Antioxidants and modulation of autophagy have thus become promising strategies for the treatment of ischemic myocardial injury. This study proposes an antioxidant-activated autophagy therapeutic regimen based on combining melanin (Mel), an excellent antioxidant with metformin mimetic ploymetformin via electrostatic interactions, to obtain a nanocomplex (Met-Mel). The nanocomplex is finally encapsulated with platelet membranes (PMN) to construct a biomimetic nanoparticle (PMN@Met-Mel) capable of targeting injured myocardium. The prepared PMN@Met-Mel has good Mel loading capacity and optimal biosafety. It exhibits excellent antioxidant activity and autophagy activation, rapidly restoring mitochondrial function. Moreover, RNA sequencing (RNA-seq) analysis reveals that PMN@Met-Mel operates mechanistically by triggering the activation of the autophagy pathway. Subsequent in vivo experiments showcase promising cardioprotective effects of these nanoparticles. These discoveries present a newly devised nanoplatform with promising potential for the effective treatment of myocardial infarction.


Subject(s)
Antioxidants , Myocardial Infarction , Humans , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Myocardium/metabolism , Oxidative Stress
12.
Plant Biotechnol J ; 22(6): 1516-1535, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38184781

ABSTRACT

Plant health is intricately linked to crop quality, food security and agricultural productivity. Obtaining accurate plant health information is of paramount importance in the realm of precision agriculture. Wearable sensors offer an exceptional avenue for investigating plant health status and fundamental plant science, as they enable real-time and continuous in-situ monitoring of physiological biomarkers. However, a comprehensive overview that integrates and critically assesses wearable plant sensors across various facets, including their fundamental elements, classification, design, sensing mechanism, fabrication, characterization and application, remains elusive. In this study, we provide a meticulous description and systematic synthesis of recent research progress in wearable sensor properties, technology and their application in monitoring plant health information. This work endeavours to serve as a guiding resource for the utilization of wearable plant sensors, empowering the advancement of plant health within the precision agriculture paradigm.


Subject(s)
Agriculture , Wearable Electronic Devices , Agriculture/methods , Crops, Agricultural , Biosensing Techniques/instrumentation
13.
Nucleic Acids Res ; 52(D1): D1556-D1568, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37897364

ABSTRACT

Plant disease, a huge burden, can cause yield loss of up to 100% and thus reduce food security. Actually, smart diagnosing diseases with plant phenomics is crucial for recovering the most yield loss, which usually requires sufficient image information. Hence, phenomics is being pursued as an independent discipline to enable the development of high-throughput phenotyping for plant disease. However, we often face challenges in sharing large-scale image data due to incompatibilities in formats and descriptions provided by different communities, limiting multidisciplinary research exploration. To this end, we build a Plant Phenomics Analysis of Disease (PlantPAD) platform with large-scale information on disease. Our platform contains 421 314 images, 63 crops and 310 diseases. Compared to other databases, PlantPAD has extensive, well-annotated image data and in-depth disease information, and offers pre-trained deep-learning models for accurate plant disease diagnosis. PlantPAD supports various valuable applications across multiple disciplines, including intelligent disease diagnosis, disease education and efficient disease detection and control. Through three applications of PlantPAD, we show the easy-to-use and convenient functions. PlantPAD is mainly oriented towards biologists, computer scientists, plant pathologists, farm managers and pesticide scientists, which may easily explore multidisciplinary research to fight against plant diseases. PlantPAD is freely available at http://plantpad.samlab.cn.


Subject(s)
Phenomics , Plant Diseases , Crops, Agricultural , Image Processing, Computer-Assisted , Phenotype
14.
Saudi Pharm J ; 31(12): 101845, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38028216

ABSTRACT

Objectives: This study aimed to evaluate the efficiency of a 14-year refined management system for the reduction of dispensing errors in a large-scale hospital outpatient pharmacy and to determine the effects of person-related and environment-related factors on the occurrence of dispensing errors. Methods: A retrospective study was performed. Data on dispensing errors, inventory and account management from 2008 to 2021 were collected from the electronic system and evaluated using the direct observation method and the Plan-Do-Check-Act (PDCA) cycle. Results: The consistency of the inventory and accounts increased substantially (from 86.93 % to 99.75 %) with the implementation of the refined management program. From 2008 to 2021, the total number of dispensing errors was reduced by approximately 96.1 %. The number of dispensing errors in quantity and name was reduced by approximately 98.2 % and 95.07 %, respectively. A remarkable reduction in the error rate was achieved (from 0.014 % to 0.00002 %), and the rate of dispensing errors was significantly reduced (0.019 % vs. 0.0003 %, p < 0.001). Across all medication dispensing errors, human-related errors decreased substantially (208 vs. 7, p < 0.05), as did non-human-related errors also (202 vs. 9, p < 0.05). There was a correlation between the occurrence of errors and pharmacists' sex (females generally made fewer errors than males), age (more errors were made by those aged 31-40 years), and working years (more errors were made by those with more than 11 years of work experience) from 2016 to 2021. The technicians improved during this procedure. Conclusions: Refined management using the PDCA cycle was helpful in preventing dispensing errors and improving medication safety for patients.

15.
J Phys Chem B ; 127(47): 10243-10251, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37975617

ABSTRACT

In this work, the effect of cross-linking degree and stretching on the thermal conductivity of poly(dimethylsiloxane) (PDMS) is explored by performing a molecular dynamics simulation. Our results demonstrate that the thermal conductivity of PDMS exhibits a monotonous rise with an increase in the cross-linking degree. By decomposing the total heat flux into three microscopic heat transfer modes, the high cross-linking degree improves the contribution from bonding interactions to the heat transfer more than that from the nonbonding interactions. An analysis of the vibrational density of states shows a blue-shift of the vibrational modes at low frequencies, indicating a large phonon group velocity due to the strong interchain bonding interaction. From the spectral distribution of heat flux, the spectral contributions are shifted toward the higher frequencies with the increasing cross-linking degree, which reflects more contribution from the high-frequency modes to the heat transfer. Stretching can improve the thermal conductivity parallel to the tensile direction with the increase in strain. This is mainly due to the further improved contribution of bonding interactions or high-frequency modes to heat transfer. Interestingly, the anisotropy of the thermal conductivity first decreases and then increases with the increasing cross-linking degree. Our study conducts a detailed investigation of the thermal conductivity of cross-linked PDMS, providing guidance on the application of thermal interface materials.

16.
Plant J ; 116(4): 1030-1040, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37856620

ABSTRACT

Fruit traits are critical determinants of plant fitness, resource diversity, productive and quality. Gene regulatory networks in plants play an essential role in determining fruit traits, such as fruit size, yield, firmness, aroma and other important features. Many research studies have focused on elucidating the associated signaling pathways and gene interaction mechanism to better utilize gene resources for regulating fruit traits. However, the availability of specific database of genes related to fruit traits for use by the plant research community remains limited. To address this limitation, we developed the Gene Improvements for Fruit Trait Database (GIFTdb, http://giftdb.agroda.cn). GIFTdb contains 35 365 genes, including 896 derived from the FR database 1.0, 305 derived from 30 882 articles from 2014 to 2021, 236 derived from the Universal Protein Resource (UniProt) database, and 33 928 identified through homology analysis. The database supports several aided analysis tools, including signal transduction pathways, gene ontology terms, protein-protein interactions, DNAWorks, Basic Local Alignment Search Tool (BLAST), and Protein Subcellular Localization Prediction (WoLF PSORT). To provide information about genes currently unsupported in GIFTdb, potential fruit trait-related genes can be searched based on homology with the supported genes. GIFTdb can provide valuable assistance in determining the function of fruit trait-related genes, such as MYB306-like, by conducting a straightforward search. We believe that GIFTdb will be a valuable resource for researchers working on gene function annotation and molecular breeding to improve fruit traits.


Subject(s)
Fruit , Genes, Plant , Fruit/metabolism , Phenotype , Plants/genetics , Molecular Sequence Annotation
17.
Lancet Reg Health West Pac ; 41: 100922, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37867621

ABSTRACT

Background: HIV self-testing (HIVST) offers potential solutions to challenges associated with site-based HIV testing (SBHT). However, the effectiveness of HIVST as an HIV prevention strategy for men who have sex with men (MSM) discontinuing pre-exposure prophylaxis (PrEP) after the completion of PrEP demonstration project has rarely been assessed. Methods: The China Real-world Study of Oral PrEP (CROPrEP) project was conducted in four cities in China. Participants were directed to community resources to continue their PrEP medication after the discontinuation of project-provided PrEP at the last CROPrEP visit. We conducted a multicentre open-label randomized controlled trial among MSM who had discontinued PrEP induced by the completion of CROPrEP. Eligible participants were randomly assigned to either the intervention group or the control group (1:1). Participants received regular health education and behavioural interventions throughout the trial. The intervention group was given a link to order free HIVST kits online, while the control group received information about free SBHT. Both groups completed internet-based follow-up surveys at three and six months. The primary outcome was the proportion of participants who underwent HIV testing during the six-month follow-up period. This trial was registered at chictr.org.cn (ChiCTR2000038416). Findings: Between November 2020 and January 2021, we recruited a total of 620 participants (300 in the intervention group and 320 in the control group). The follow-up completion rates were 99·0% and 95·0% in the intervention and control groups, respectively. At baseline, the median age of participants was 32 (interquartile range: 26-37), and 77·7% underwent HIV testing in the past three months. The proportion of participants who underwent HIV testing in the past three months was higher in the intervention group than in the control group at both the three-month (adjusted risk difference [RD]: 36·7, 95% confidence interval [CI]: 35·1-38·5, p < 0·001) and six-month (RD: 26·7, 95% CI: 24·6-28·7 p < 0·001) follow-up periods. Interpretation: Our study suggests that providing online distribution of HIVST kits for MSM with PrEP discontinuation induced by completion of the PrEP project effectively promoted HIV testing. This digital approach improves access to HIV testing for MSM and can be applicable to other settings where MSM turn to online public health services. Funding: The study was funded by the Fund of National Natural Science Foundation of China; the Mega-Projects of National Science Research for the 13th Five-Year Plan; and the Liaoning Revitalization Talents Program, China.

18.
Microsyst Nanoeng ; 9: 101, 2023.
Article in English | MEDLINE | ID: mdl-37554951

ABSTRACT

One of the crucial issues for applying electret/triboelectric power generators in the Internet of Things (IoT) is to take full advantage of specific high voltage signals and enable self-powered sensing. Therefore, inspired by Miura-origami, we present an innovative origami power generator (OPG) constructed from only one piece of electret thin film. The Miura-origami architecture realizes a generator with excellent deformability and stretchability and makes it unnecessary for any auxiliary support structure during the compress-release cycle. Various parameters of the generator are intensively investigated, including the excitation accelerations, excitation displacements, numbers of power generation units and deformation degree of the device. When stimulated with 5.0 g acceleration at 15 Hz frequency, the generator with 8 generation units can obtain an instantaneous peak-to-peak voltage and a remarkable optimum peak power of 328 V and 2152 µW at 50 MΩ, respectively. In addition, the regulable shape and multiple generation modes of the device greatly improve its applicability in various vibration energy collection requirements. Based on the above results, a hexagonal electret generator integrated with six-phase OPGs is developed as a "Buoy on Sky," after which the signal waveforms generated from internal power generators are recognized with 92% accuracy through a neural network algorithm that identifies the vibration conditions of transmission lines. This work demonstrates that a fusion of origami art and energy conversion techniques can achieve a multifunctional generator design satisfying the requirements for IoT applications.

19.
Plant Phenomics ; 5: 0062, 2023.
Article in English | MEDLINE | ID: mdl-37396495

ABSTRACT

Plant disease diagnosis in time can inhibit the spread of the disease and prevent a large-scale drop in production, which benefits food production. Object detection-based plant disease diagnosis methods have attracted widespread attention due to their accuracy in classifying and locating diseases. However, existing methods are still limited to single crop disease diagnosis. More importantly, the existing model has a large number of parameters, which is not conducive to deploying it to agricultural mobile devices. Nonetheless, reducing the number of model parameters tends to cause a decrease in model accuracy. To solve these problems, we propose a plant disease detection method based on knowledge distillation to achieve a lightweight and efficient diagnosis of multiple diseases across multiple crops. In detail, we design 2 strategies to build 4 different lightweight models as student models: the YOLOR-Light-v1, YOLOR-Light-v2, Mobile-YOLOR-v1, and Mobile-YOLOR-v2 models, and adopt the YOLOR model as the teacher model. We develop a multistage knowledge distillation method to improve lightweight model performance, achieving 60.4% mAP@ .5 in the PlantDoc dataset with small model parameters, outperforming existing methods. Overall, the multistage knowledge distillation technique can make the model lighter while maintaining high accuracy. Not only that, the technique can be extended to other tasks, such as image classification and image segmentation, to obtain automated plant disease diagnostic models with a wider range of lightweight applicability in smart agriculture. Our code is available at https://github.com/QDH/MSKD.

20.
ACS Omega ; 8(26): 23772-23781, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426219

ABSTRACT

Controlled- or slow-release urea can improve crop nitrogen use efficiencies and yields in many agricultural production systems. The effect of controlled-release urea on the relationships between levels of gene expression and yields has not been adequately researched. We conducted a 2 year field study with direct-seeded rice, which included treatments of controlled-release urea at four rates (120, 180, 240, and 360 kg N ha-1), a standard urea treatment (360 kg N ha-1), and a control treatment without applied nitrogen. Controlled-release urea improved the inorganic nitrogen concentrations of root-zone soil and water, functional enzyme activities, protein contents, grain yields, and nitrogen use efficiencies. Controlled-release urea also improved the gene expressions of nitrate reductase [NAD(P)H] (EC 1.7.1.2), glutamine synthetase (EC 6.3.1.2), and glutamate synthase (EC 1.4.1.14). With the exception of glutamate synthase activity, there were significant correlations among these indices. The results showed that controlled-release urea improved the content of inorganic nitrogen within the rice root zone. Compared with urea, the average enzyme activity of controlled-release urea increased by 50-200%, and the relative gene expression was increased by 3-4 times on average. The added soil nitrogen increased the level of gene expression, allowing enhanced synthesis of enzymes and proteins for nitrogen absorption and use. Hence, controlled-release urea improved the nitrogen use efficiency and the grain yield of rice. Controlled-release urea is an ideal nitrogen fertilizer showing great potential for improving rice production.

SELECTION OF CITATIONS
SEARCH DETAIL
...