Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 912: 169119, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38070559

ABSTRACT

Both droughts and tropical cyclones (TCs) are among the world's most widespread natural disasters. This paper is concentrated on the effects of TCs on the links between meteorological droughts (MDs) and agricultural droughts (ADs). Specifically, changes in characteristics of drought events and variations in propagation features of matched MD and AD event pairs are quantified by using the renowned three-dimensional connected components algorithm; both alleviation and exacerbation effects of TCs are evaluated; and the Spearman's correlation is employed to identify potential contributors to exacerbated droughts after TCs. The results show that TCs exhibit more pronounced and widespread alleviation effects on MD events compared to AD events. >98 % of small-scale drought events are terminated by TCs, leading to 65 % reduction in the total area of MD events smaller than 50,000 km2 and 32 % reduction in AD events of the same scale. In the meantime, TCs can reshape the spatiotemporal links between MDs and ADs by reducing the overall propagation rate from 77 % to 40 % and ameliorating the characteristics of drought event pairs with higher propagation efficiency, by >40 %. After TCs, over 55 % of drought exacerbations in TC-affected regions occur first in the vicinity of the residual large-scale AD events. This occurrence is partially associated with the reduction in moisture exports from these residual droughts downwind to the interior of TC-affected regions, a process potentially facilitated by the TC-induced temperature cooling. The in-depth evaluation of this paper presents useful information for better drought preparation and mitigation under TCs.

2.
Food Chem ; 243: 26-35, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29146337

ABSTRACT

In this study, the degradation of polysaccharides from blackcurrant (BCP) was investigated. Two low-molecular-weight polysaccharides (DBCP-1, DBCP-2) were obtained using Fe2+ with different concentrations of H2O2 solution. IR spectra showed DBCPs had obvious characteristic peaks of polysaccharides. GC analysis confirmed DBCPs were composed of the same monosaccharide units as BCP but with different molar ratios. NMR analysis indicated DBCPs and BCP had similar glycosidic linkage patterns. The surface area of fragmented structure in DBCPs was reduced compared to BCP, and they had no triple helix structure. The results of bioactivity assays indicated that DBCPs exhibited higher antioxidant, α-amylase and α-glucosidase inhibitory activities than BCP, and the degraded polysaccharides with the lower molecular weight possessed higher bioactivities. These results suggested that Fe2+-H2O2 degradation did not change the main structure of polysaccharide and the degree of degradation could play a key role in the bioactivities of the polysaccharides.


Subject(s)
Antioxidants/chemistry , Hypoglycemic Agents/chemistry , Plant Extracts/chemistry , Polysaccharides/chemistry , Ribes/chemistry , Fruit/chemistry , Hydrogen Peroxide/chemistry , Kinetics , Molecular Weight , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/chemistry
3.
Int J Biol Macromol ; 109: 1344-1354, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29199123

ABSTRACT

Sulfated modification was conducted to modify a homogenous polysaccharide from blackcurrant (BCP). The sulfated polysaccharides (SBCPs) with different degree of substitution (DS) were synthesized using the aminosulfonic acid (ASA)/4-dimethylaminopyridine method by varying reaction conditions such as the mass ratio of ASA to BCP, temperature, and time. Three sulfated derivatives were chosen for high-performance gel-permeation chromatography, gas chromatography, fourier-transform infrared (FT-IR) spectroscopy, and nuclear magnetic resonance (NMR), and activity studies, designated as SBCP-1, SBCP-2, and SBCP-3 with DS of 1.28, 0.95, and 0.53, respectively. Results showed that the sulfated modification was successful, and SBCPs had an increase in molecular weight compared to BCP. Both SBCPs and BCP were composed of rhamnose, arabinose, xylose, mannose, galactose, and glucose, with different molar ratios. Sulfate substitution was further confirmed by FT-IR and 13C NMR analysis. SBCPs exhibited excellent antioxidant capacities (DPPH, hydroxyl, and superoxide radical scavenging, reducing power, and ferrous metal-chelating capacities) and α-amylase inhibitory activity in vitro, and the activities of SBCPs were significantly improved in positive correlation with the DS value. This study suggested that SBCPs could serve as potential antioxidant agents to be used as alternative supplements or functional foods.


Subject(s)
Antioxidants/chemistry , Antioxidants/pharmacology , Polysaccharides/chemistry , Polysaccharides/pharmacology , Ribes/chemistry , alpha-Amylases/chemistry , Antioxidants/isolation & purification , Chromatography, Gas , Enzyme Activation/drug effects , Magnetic Resonance Spectroscopy , Metals/chemistry , Metals/metabolism , Molecular Weight , Monosaccharides/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Extracts/pharmacology , Polysaccharides/isolation & purification , Spectroscopy, Fourier Transform Infrared , Temperature , alpha-Amylases/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...