Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 49(4): 2310-8, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25650519

ABSTRACT

The authors have recently reported the fabrication of superabsorbent cryogels decorated with silver nanoparticles (PSA/AgNP cryogels) that demonstrate rapid water disinfection. This paper provides a systematic elucidation of the bactericidal mechanisms of AgNPs (silver nanoparticles), both generally and in the specific context of cryogels. Direct contact between the PSA/AgNP cryogel interface and the bacterial cells is required to accomplish disinfection. Specifically, the disinfection efficacy is closely correlated to the cell-bound Ag concentration, which constitutes >90% of the Ag released. Cells exposed to PSA/AgNP cryogels show a significant depletion of intracellular adenosine triphosphate (ATP) content and cell-membrane lesions. A positive ROS (reactive oxygen species) scavenging test confirms the involvement of ROS (·O2(-), H2O2, and ·OH) in the bactericidal mechanism. Furthermore, exposed bacterial cells show an enhanced level of thiobarbituric acid reactive substances, indicating the occurrence of cell-membrane peroxidation mediated by ROS. In addition, this study reveals that both Ag(+) and Ag(0) are involved in the bactericidal mechanism of AgNPs via tests conducted using PSA cryogels with bound Ag(+) ions (or PSA/Ag(+) cryogels without reducing Ag(+) to Ag(0)). Significantly, bacterial cells exposed to PSA/Ag(+) cryogels did not show any cell-membrane damage even though the former had a higher cell-bound Ag concentration than that of the PSA/AgNP cryogels, thus indicating the differential action of Ag(+) and Ag(0).


Subject(s)
Anti-Bacterial Agents/chemistry , Cryogels/chemistry , Disinfection/methods , Metal Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Cell Membrane/drug effects , Hydrogen Peroxide/chemistry , Reactive Oxygen Species , Silver/pharmacokinetics , Water/chemistry , Water Microbiology , Water Purification/methods
2.
Environ Sci Technol ; 48(24): 14273-81, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25379759

ABSTRACT

Fouling control is one of the critical issues in membrane filtration and plays a very important role in water/wastewater treatment. Better understanding of the underlying fouling mechanisms entails novel characterization techniques that can realize a real-time noninvasive observation and provide high resolution images recording the formation of a fouling layer. This work presents a characterization method based on optical coherence tomography (OCT), which is able to detect the internal structures and motions by analyzing the interference signals. An OCT system was incorporated with a laboratory-scale membrane filtration system, and the growth of the fouling layer was observed by using the structural imaging. Taking advantage of the Doppler effects, the OCT-based characterization also provided the velocity profiles of the fluid field, which are of great value in analyzing the formation of the cake layer. The characterization results clearly reveal for the first time the evolution of the morphology of the cake layer under different microhydrodynamic environments. This study demonstrates that OCT-based characterization is a powerful tool for investigating the dynamic processes during membrane fouling.


Subject(s)
Biofouling , Membranes, Artificial , Tomography, Optical Coherence , Water Purification/methods , Bioreactors , Filtration/methods , Waste Disposal, Fluid , Wastewater
3.
Nanoscale ; 5(20): 9651-8, 2013 Oct 21.
Article in English | MEDLINE | ID: mdl-23963594

ABSTRACT

We report a novel method to prepare bind-free graphene foams as O2 electrodes for Li-O2 batteries. The graphene foams are synthesized by electrochemical leavening of the graphite papers, followed by annealing in inert gas to control the amount of structural defects in the graphene foams. It was found that the structural defects were detrimental to the processes of the ORR and OER in Li-O2 batteries. The round-trip efficiencies and the cycling stabilities of the graphene foams were undermined by the structural defects. For example, the as-prepared graphene foam with a high defect level (ID/IG = 0.71) depicted a round-trip efficiency of only 0.51 and a 20(th)-cycle discharge capacity of only 340 mA h g(-1) at a current density of 100 mA g(-1). By contrast, the graphene foam electrode annealed at 800 °C with ID/IG = 0.07 delivered a round-trip efficiency of up to 80% with a stable discharge voltage at ~2.8 V and a stable charge voltage below 3.8 V for 20 cycles. According to the analysis on the electrodes after 20 cycles, the structural defects led to the quickened decay of the graphene foams and boosted the formation of side products.


Subject(s)
Electric Power Supplies , Graphite/chemistry , Oxygen/chemistry , Electrochemical Techniques , Electrodes , Lithium/chemistry
4.
Beilstein J Nanotechnol ; 3: 513-23, 2012.
Article in English | MEDLINE | ID: mdl-23019546

ABSTRACT

We report a facile method to prepare a nanoarchitectured lithium manganate/graphene (LMO/G) hybrid as a positive electrode for Li-ion batteries. The Mn(2)O(3)/graphene hybrid is synthesized by exfoliation of graphene sheets and deposition of Mn(2)O(3) in a one-step electrochemical process, which is followed by lithiation in a molten salt reaction. There are several advantages of using the LMO/G as cathodes in Li-ion batteries: (1) the LMO/G electrode shows high specific capacities at high gravimetric current densities with excellent cycling stability, e.g., 84 mAh·g(-1) during the 500th cycle at a discharge current density of 5625 mA·g(-1) (~38.01 C capacity rating) in the voltage window of 3-4.5 V; (2) the LMO/G hybrid can buffer the Jahn-Teller effect, which depicts excellent Li storage properties at high current densities within a wider voltage window of 2-4.5 V, e.g., 93 mAh·g(-1) during the 300th cycle at a discharge current density of 5625 mA·g(-1) (~38.01 C). The wider operation voltage window can lead to increased theoretical capacity, e.g., 148 mAh·g(-1) between 3 and 4.5 V and 296 mAh·g(-1) between 2 and 4.5 V; (3) more importantly, it is found that the attachment of LMO onto graphene can help to reduce the dissolution of Mn(2+) into the electrolyte, as indicated by the inductively coupled plasma (ICP) measurements, and which is mainly attributed to the large specific surface area of the graphene sheets.

SELECTION OF CITATIONS
SEARCH DETAIL
...