Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Adv Mater ; : e2405966, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771978

ABSTRACT

Fluorescence imaging (FLI)-guided phototheranostics using emission from the second near-infrared (NIR-II) window show significant potential for cancer diagnosis and treatment. Clinical imaging-used polymethine ionic indocyanine green (ICG) dye is widely adopted for NIR fluorescence imaging-guided photothermal therapy (PTT) research due to its exceptional photophysical properties. However, ICG has limitations such as poor photostability, low photothermal conversion efficiency (PCE), short-wavelength emission peak, and liver-targeting issues, which restrict its wider use. In this study, two ionic ICG derivatives are transformed into neutral merocyanines (mCy) to achieve much-enhanced performance for NIR-II cancer phototheranostics. Initial designs of two ionic dyes show similar drawbacks as ICG in terms of poor photostability and low photothermal performance. One of the modified neutral molecules, mCy890, shows significantly improved stability, an emission peak over 1000 nm, and a high photothermal PCE of 51%, all considerably outperform ICG. In vivo studies demonstrate that nanoparticles of the mCy890 can effectively accumulate at the tumor sites for cancer photothermal therapy guided by NIR-II fluorescence imaging. This research provides valuable insights into the development of neutral merocyanines for enhanced cancer phototheranostics.

2.
Adv Sci (Weinh) ; 11(18): e2309131, 2024 May.
Article in English | MEDLINE | ID: mdl-38430537

ABSTRACT

Photoacoustic imaging (PAI)-guided photothermal therapy (PTT) in the second near-infrared (NIR-II, 1000-1700 nm) window has been attracting attention as a promising cancer theranostic platform. Here, it is reported that the π-extended porphyrins fused with one or two nanographene units (NGP-1 and NGP-2) can serve as a new class of NIR-responsive organic agents, displaying absorption extending to ≈1000 and ≈1400 nm in the NIR-I and NIR-II windows, respectively. NGP-1 and NGP-2 are dispersed in water through encapsulation into self-assembled nanoparticles (NPs), achieving high photothermal conversion efficiency of 60% and 69%, respectively, under 808 and 1064 nm laser irradiation. Moreover, the NIR-II-active NGP-2-NPs demonstrated promising photoacoustic responses, along with high photostability and biocompatibility, enabling PAI and efficient NIR-II PTT of cancer in vivo.


Subject(s)
Photoacoustic Techniques , Porphyrins , Theranostic Nanomedicine , Porphyrins/chemistry , Theranostic Nanomedicine/methods , Photoacoustic Techniques/methods , Mice , Animals , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Graphite/chemistry , Humans , Infrared Rays , Disease Models, Animal , Photothermal Therapy/methods , Cell Line, Tumor , Neoplasms/therapy , Phototherapy/methods
3.
Adv Sci (Weinh) ; 11(14): e2306936, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38298088

ABSTRACT

PtII based organometallic photosensitizers (PSs) have emerged as novel potent photodynamic inactivation (PDI) reagents through their enhanced intersystem crossing (ISC) processes. Currently, few PtII PSs have been investigated as antibacterial materials, with relatively poor performances reported and with structure-activity relationships not well described. Herein, a pair of configurational isomers are reported of Bis-BODIPY (4,4-difluoro-boradizaindacene) embedded PtII PSs. The cis-isomer (cis-BBP) displayed enhanced 1O2 generation and better bacterial membrane anchoring capability as compared to the trans-isomer (trans-BBP). The effective PDI concentrations (efficiency > 99.9%) for cis-BBP in Acinetobacter baumannii (multi-drug resistant (MDR)) and Staphylococcus aureus are 400 nM (12 J cm-2) and 100 nM (18 J cm-2), respectively; corresponding concentrations and light doses for trans-BBP in the two bacteria are 2.50 µM (30 J cm-2) and 1.50 µM (18 J cm-2), respectively. The 50% and 90% minimum inhibitory concentration (MIC50 and MIC90) ratio of trans-BBP to cis-BBP is 22.22 and 24.02 in A. baumannii (MDR); 21.29 and 22.36 in methicillin resistant S. aureus (MRSA), respectively. Furthermore, cis-BBP displays superior in vivo antibacterial performance, with acceptable dark and photoinduced cytotoxicity. These results demonstrate cis-BBP is a robust light-assisted antibacterial reagent at sub-micromolecular concentrations. More importantly, configuration of PtII PSs should be an important issue to be considered in further PDI reagents design.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Photosensitizing Agents/pharmacology , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology
4.
Biomater Sci ; 12(7): 1716-1725, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38344762

ABSTRACT

Emerging CRISPR-Cas9 systems can rebuild DNA sequences in the genome in a spatiotemporal manner, offering a magic tool for biological research, drug discovery, and gene therapy. However, low delivery efficiency remains a major roadblock hampering the wide application of CRISPR-Cas9 gene editing talent. Herein, ionic liquid-conjugated polymers (IL-CPs) are explored as efficient platforms for CRISPR-Cas9 plasmid delivery and in vivo genome editing-based tumor therapy. Via molecular screening of IL-CPs, IL-CPs integrated with fluorination monomers (PBF) can encapsulate plasmids into hybrid nanoparticles and achieve over 90% delivery efficiency in various cells regardless of serum interference. In vitro and in vivo experiments demonstrate that PBF can mediate Cas9/PLK1 plasmids for intracellular delivery and therapeutic genome editing in tumor, achieving efficient tumor suppression. This work provides a new tool for safe and efficient CRISPR-Cas9 delivery and therapeutic genome editing, thus opening a new avenue for the development of ionic liquid polymeric vectors for genome editing and therapy.


Subject(s)
Gene Editing , Ionic Liquids , CRISPR-Cas Systems/genetics , Polymers , Plasmids/genetics
5.
Nanoscale ; 16(7): 3422-3429, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38284457

ABSTRACT

Bacterial biosynthesis of nanomaterials has several advantages (e.g., reduced energy inputs, lower cost, negligible environmental pollution) compared with traditional approaches. Various nanomaterials have been produced by bacteria. However, reports on using the bacterial biosynthesis of nanomaterials for applications with solar-thermal agents are scarce due to their narrow optical absorption. Herein, for the first time, we proposed a bacterial biosynthesis of broad-absorbing tellurium nanoneedles and demonstrated their effectiveness for solar-thermal evaporation and antibacterial applications. By simple biosynthesis within bacteria (Shewanella oneidensis MR-1), tellurium nanoneedles achieved a superfine configuration with a length-to-diameter ratio of nearly 20 and broad-spectrum absorbance. After integrating tellurium nanoneedles into a porous polyvinyl-alcohol scaffold, a solar-thermal still named TSAS-3 realized a high evaporation rate of 2.25 kg m-2 h-1 and solar-thermal conversion efficiency of 81% upon 1-Sun illumination. Based on these unique properties, the scaffold displayed good performances in seawater desalination, multiple wastewater treatment, and antibacterial applications. This work provides a simple and feasible strategy for the use of microbial-synthesized nanomaterials in solar-driven water purification and antibacterial applications.


Subject(s)
Nanostructures , Water Purification , Tellurium , Anti-Bacterial Agents/pharmacology , Polyvinyl Alcohol , Water
6.
J Colloid Interface Sci ; 659: 160-177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38160645

ABSTRACT

The self-discharge by corrosion of zinc-air batteries (ZABs) will result in the reduced coulombic efficiency and lower energy efficiency. The additives in electrolyte should not only inhibit the occurrence of self-corrosion during battery dormancy, but also achieve a stable cycle of adsorption-desorption during battery operation, improving the durability of discharge cycles. But the former requires strong binding between additives and zinc to form a dense protective film, while the latter requires easy desorption of additives and zinc without affecting discharge power, which is contradictory to balance. In this study, a dynamic combination of additives and zinc, as well as a design of multi-channel strategy for the corresponding protective layer, have been proposed to solve the issues of self-corrosion and discharge cycle stability. Specifically, the surfactant (octylphenol polyoxyethylene ether phosphate (OP-10P)) and 1,10-decanedithiol (DD) have been selected as the combined anti-corrosion additives in ZABs with concentrated alkaline solution. The synergistic inhibition mechanism and the stabilization mechanism in zinc-air full cells have been studied systematically. The results indicated that the combined inhibitors inhibited the self-corrosion of Zn efficiently in the dormancy, and the inhibition efficiency reached 99.9 % at the optimized proportion. OP-10P achieve the preferential adsorption on the zinc surface, and then the chelates of DD with Zn2+ deposit on the outer layer to form the protective film with fine hydrophobic performance. The stability of ZABs in discharge and charging cycles has been improved owing to the multilayer adsorption film on zinc surface, which retains ion transport channels with the homogeneously pores to weaken the dendrites and side reactions during galvanostatic cycles. A probable model on zinc surface was established to discuss the actual working mechanism.

7.
Nanomicro Lett ; 16(1): 21, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37982963

ABSTRACT

Massive efforts have been concentrated on the advance of eminent near-infrared (NIR) photothermal materials (PTMs) in the NIR-II window (1000-1700 nm), especially organic PTMs because of their intrinsic biological safety compared with inorganic PTMs. However, so far, only a few NIR-II-responsive organic PTMs was explored, and their photothermal conversion efficiencies (PCEs) still remain relatively low. Herein, donor-acceptor conjugated diradical polymers with open-shell characteristics are explored for synergistically photothermal immunotherapy of metastatic tumors in the NIR-II window. By employing side-chain regulation, the conjugated diradical polymer TTB-2 with obvious NIR-II absorption was developed, and its nanoparticles realize a record-breaking PCE of 87.7% upon NIR-II light illustration. In vitro and in vivo experiments demonstrate that TTB-2 nanoparticles show good tumor photoablation with navigation of photoacoustic imaging in the NIR-II window, without any side-effect. Moreover, by combining with PD-1 antibody, the pulmonary metastasis of breast cancer is high-effectively prevented by the efficient photo-immunity effect. Thus, this study explores superior PTMs for cancer metastasis theranostics in the NIR-II window, offering a new horizon in developing radical-characteristic NIR-II photothermal materials.

8.
J Nanobiotechnology ; 21(1): 314, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37667389

ABSTRACT

Second near-infrared (NIR-II) fluorescence imaging in the range of 1000-1700 nm has great prospects for in vivo imaging and theranostics monitoring. At present, few NIR-II probes with theranostics properties have been developed, especially the high-performance organic theranostics material remains underexploited. Herein, we demonstrate a selenium (Se)-tailoring method to develop high-efficient NIR-II imaging-guided material for in vivo cancer phototheranostics. Via Se-tailoring strategy, conjugated oligomer TPSe-based nanoparticles (TPSe NPs) achieve bright NIR-II emission up to 1400 nm and exhibit a relatively high photothermal conversion efficiency of 60% with good stability. Moreover, the TPSe NPs demonstrate their photothermal ablation of cancer cells in vitro and tumor in vivo with the guidance of NIR-II imaging. It is worth noting that the TPSe NPs have good biocompatibility without obvious side effects. Thus, this work provides new insight into the development of NIR-II theranostics agents.


Subject(s)
Nanoparticles , Neoplasms , Selenium , Humans , Optical Imaging , Neoplasms/diagnostic imaging , Neoplasms/therapy
9.
Adv Healthc Mater ; 12(31): e2301954, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37722719

ABSTRACT

Cell fate can be efficiently modulated by switching ion channels. However, the precise regulation of ion channels in cells, especially in specific organelles, remains challenging. Herein, biomimetic second near-infrared (NIR-II) responsive conjugated oligomer nanoparticles with dual-targeted properties are designed and prepared to modulate the ion channels of mitochondria to selectively kill malignant cells in vivo. Upon 1060 nm laser irradiation, the mitochondria-located nanoparticles photothermally release a specific ion inhibitor of the potassium channel via a temperature-sensitive liposome, thus altering the redox balance and pathways of mitochondria. NIR-II responsive nanoparticles can effectively regulate the potassium channels of mitochondria and fully suppress tumor growth. This work provides a new modality based on the NIR-II nanoplatform to regulate ion channels in specific organelles and proposes an effective therapeutic mechanism for malignant tumors.


Subject(s)
Nanoparticles , Neoplasms , Humans , Precision Medicine , Potassium Channels , Neoplasms/drug therapy , Neoplasms/pathology , Nanoparticles/metabolism , Mitochondria , Cell Line, Tumor , Phototherapy
10.
Adv Sci (Weinh) ; 10(28): e2302422, 2023 10.
Article in English | MEDLINE | ID: mdl-37544896

ABSTRACT

Prostate cancer (PCa) is a frustrating immunogenic "cold" tumor and generally receives unsatisfied immunotherapy outcomes in the clinic. Pyroptosis is an excellent immunogenic cell death form that can effectively activate the antitumor immune response, promote cytotoxic T-lymphocyte infiltration, and convert tumors from "cold" to "hot." However, the in vivo application of pyroptosis drugs is seriously limited, and the upregulation of tumor PD-L1 caused by photo-immunotherapy further promotes immune escape. Herein, a new nano-photosensitizer (YBS-BMS NPs-RKC) with pH-response integrating immunogenic pyroptosis induction and immune checkpoint blockade is developed. The pH-responsive polymer equipped with the cell membrane anchoring peptide RKC is used as the carrier and further encapsulated with the near-infrared-activated semiconductor polymer photosensitizer YBS and a PD-1/PD-L1 complex small molecule inhibitor BMS-202. The pH-driven membrane-anchoring and pyroptosis activation of YBS-BMS NPs-RKC is clearly demonstrated. In vitro and in vivo studies have shown that this dual-pronged therapy stimulates a powerful antitumor immune response to suppress primary tumor progression and evokes long-term immune memory to inhibit tumor relapse and metastasis. This work provides an effective self-synergistic platform for PCa immunotherapy and a new idea for developing more biocompatible photo-controlled pyroptosis inducers.


Subject(s)
B7-H1 Antigen , Prostatic Neoplasms , Male , Humans , Photosensitizing Agents , Pyroptosis , Neoplasm Recurrence, Local , Prostatic Neoplasms/drug therapy , Immunotherapy , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Polymers , Hydrogen-Ion Concentration
11.
Adv Mater ; 35(20): e2211632, 2023 May.
Article in English | MEDLINE | ID: mdl-36868183

ABSTRACT

Molecular fluorophores with the second near-infrared (NIR-II) emission hold great potential for deep-tissue bioimaging owing to their excellent biocompatibility and high resolution. Recently, J-aggregates are used to construct long-wavelength NIR-II emitters as their optical bands show remarkable red shifts upon forming water-dispersible nano-aggregates. However, their wide applications in the NIR-II fluorescence imaging are impeded by the limited varieties of J-type backbone and serious fluorescence quenching. Herein, a bright benzo[c]thiophene (BT) J-aggregate fluorophore (BT6) with anti-quenching effect is reported for highly efficient NIR-II bioimaging and phototheranostics. The BT fluorophores are manipulated to have Stokes shift over 400 nm and aggregation-induced emission (AIE) property for conquering the self-quenching issue of the J-type fluorophores. Upon forming BT6 assemblies in an aqueous environment, the absorption over 800 nm and NIR-II emission over 1000 nm are boosted for more than 41 and 26 folds, respectively. In vivo visualization of the whole-body blood vessel and imaging-guided phototherapy results verify that BT6 NPs are excellent agent for NIR-II fluorescence imaging and cancer phototheranostics. This work develops a strategy to construct bright NIR-II J-aggregates with precisely manipulated anti-quenching properties for highly efficient biomedical applications.


Subject(s)
Nanoparticles , Neoplasms , Humans , Fluorescent Dyes/pharmacology , Phototherapy , Optical Imaging/methods
12.
Nano Lett ; 22(13): 5427-5433, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35759348

ABSTRACT

The regulation of reactive oxygen species (ROS)-sensitive calcium (Ca2+) channels is of great significance in the treatment of tumors. Here, a simple ROS generation system is developed to activate ROS-sensitive ion channels for enhancing calcium-cascade-mediated tumor cell death under near-infrared (NIR) light irradiation. Upon irradiation with an 808 nm laser, a low-lethality amount of ROS facilitates plasmid transient potential receptor melastatin-2 (pTRPM2) gene release via cleavage of the Se-Se bonds, which contributed to enhancing the expression of TRPM2 in tumor cells. Meanwhile, ROS could potently activate TRPM2 for Ca2+ influx to inhibit early autophagy and to further induce intracellular ROS production, which ultimately led to cell death in TRPM2 expressing tumor cells. Both in vitro and in vivo data show that nanoparticles have an excellent therapeutic effect on cancer upon NIR light. This work presents a simple modality based on NIR light to remotely control the ROS-sensitive ion channel for cancer therapy.


Subject(s)
Nanoparticles , Neoplasms , TRPM Cation Channels , Calcium/metabolism , Calcium Channels/genetics , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/therapy , Reactive Oxygen Species/metabolism , TRPM Cation Channels/genetics , TRPM Cation Channels/metabolism
13.
Angew Chem Int Ed Engl ; 60(29): 16215-16223, 2021 07 12.
Article in English | MEDLINE | ID: mdl-33971079

ABSTRACT

The systemic use of pharmaceutical drugs for cancer patients is a compromise between desirable therapy and side effects because of the intrinsic shortage of organ-specific pharmaceutical drug. Design and construction of pharmaceutical drug to achieve the organ-specific delivery is thus desperately desirable. We herein regulate perylene skeleton to effect organ-specificity and present an example of lung-specific distribution on the basis of bay-twisted PDIC-NC. We further demonstrate that PDIC-NC can target into mitochondria to act as cellular respiration inhibitor, inducing insufficient production of adenosine triphosphate, promoting endogenous H2 O2 and . OH burst, elevating calcium overload, efficiently triggering the synergistic apoptosis, autophagy and endoplasmic reticulum stress of lung cancer cells. The antitumor performance of PDIC-NC is verified on in vivo xenografted, metastasis and orthotopic lung cancer, presenting overwhelming evidences for potentially clinical application. This study contributes a proof-of-concept demonstration of twisted perylene to well attain lung-specific distribution, and meanwhile achieves intensive lung cancer chemotherapy.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Perylene/chemistry , Perylene/pharmacology , Apoptosis/drug effects , Autophagy/drug effects , Cell Line, Tumor , Endoplasmic Reticulum Stress/drug effects , Humans , Structure-Activity Relationship
14.
ACS Appl Mater Interfaces ; 12(50): 55605-55613, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33258595

ABSTRACT

Molecular isomerization is a fundamental issue in the development of functional materials, with a crucial impact on photophysical properties. However, up to now, their effect on photothermal conversion is rarely investigated. Here, two near-infrared (NIR)-absorbing regioisomer conjugated polymers integrated with cis/trans-terselenophenes are designed and synthesized as efficient photothermal agents to enhance cancer phototheranostics. It is demonstrated that enhanced quinoidal resonance of trans-terselenophenes allows the resulting trans-CP to possess more planar backbone to further increase the effective conjugation length and result in the strong absorption spectra at 808 nm. Characterization of photophysical properties has proved that the photothermal conversion efficiency of trans-CP nanoparticles is up to 61.4%, and they are 210% as strong as cis-CP nanoparticles (29.4%). Further in vitro and in vivo works demonstrate efficient photothermal therapeutic effects with the guidance of photoacoustic imaging. This work affords a new understanding of the molecular isomerization into the development of conjugated materials for high-performance cancer phototheranostics.

15.
J Mater Chem B ; 8(25): 5535-5544, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32495813

ABSTRACT

Thionated perylenediimides (PDIs) can potentially generate thermal and reactive oxygen species and thus can be used as theranostic agents for photothermal/photodynamic therapy. Herein, thionated cis-/trans-isomer PDI-CS and PDI-TS were designed and prepared to investigate thionation engineering on therapeutic performance. The results revealed that the photodynamic performance is less associated with the positon of sulfur atoms. By contrast, trans-isomer PDI-TS showed a photothermal conversion efficiency of up to 58.4%, which was 40% higher than that of PDI-CS (∼41.6%). An in vitro half-maximal inhibitory concentration of ∼7.78 µg mL-1 was achieved for PDI-TS, which was 1.7-fold smaller than that of PDI-CS, strongly reasserting the regioisomer-modulated phototheranostic performance. Notably, the strong π-π and CS interactions in PDI-TS nanoagents are essential factors attributed to their excellent photothermal performance, indicating that the optimization of non-bonding interactions is an ingenious way to improve phototheranostic performance. This work provides a facile means of creating thio-perylenediimides that possess excellent antitumor properties and a novel proof of concept to improve therapeutic performance through the optimization of non-bonding interactions.


Subject(s)
Antineoplastic Agents/pharmacology , Imides/pharmacology , Nanoparticles/chemistry , Perylene/analogs & derivatives , Photochemotherapy , Photothermal Therapy , Sulfhydryl Compounds/pharmacology , Theranostic Nanomedicine , A549 Cells , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Humans , Imides/chemical synthesis , Imides/chemistry , Mice , Mice, Inbred BALB C , Mice, Nude , Molecular Structure , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology , Optical Imaging , Particle Size , Perylene/chemical synthesis , Perylene/chemistry , Perylene/pharmacology , Reactive Oxygen Species/metabolism , Stereoisomerism , Sulfhydryl Compounds/chemical synthesis , Sulfhydryl Compounds/chemistry , Surface Properties , Tumor Cells, Cultured
16.
ACS Appl Bio Mater ; 2(1): 430-436, 2019 Jan 22.
Article in English | MEDLINE | ID: mdl-35016306

ABSTRACT

Developing of two-photon materials for live-cell imaging and in vivo analysis in-depth have received great attention, and it is urgent so that such microscopy techniques could be promoted and advanced using the powerful probes. Herein, a new arylamino fumaronitrile derivative NPAPF was synthesized and transferred as aggregation-induced emission luminogen (AIEgen) fluorescent nanoparticles (AF-NPs) via assembly technique. This AF-NP exhibited a two-photon absorption cross-section at 2.6 × 106 GM with 19.5% of fluorescence quantum yield. Moreover, utilizing the great potential of AF-NPs, two-photon imaging of live cells with good cytocompatibility is realized upon two-photon microscopy. By in vivo long-term tracing studies of mesenchymal stem cells, we demonstrated the tremendous advantage of AF-NPs tracer in monitoring the stem cells transplant. Therefore, our unique AF-NPs provided an efficient two-photon-absorbing probe for investigating biological mechanism and behavior, and opened a new avenue for spatiotemporal visualization of transplanted stem cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...