Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Ying Yong Sheng Tai Xue Bao ; 28(7): 2222-2230, 2017 Jul 18.
Article in Chinese | MEDLINE | ID: mdl-29741053

ABSTRACT

Soil salinization and overgrazing are two main factors limiting animal husbandry in the Songnen Grassland. Leymus chinensis is a dominant rhizome grass, resistant to grazing as well as to-lerant to salt stress. Foliar labeled with 15N-urea was used to study the nitrogen allocation strategy and compensatory growth response to clipping under saline-alkali conditions. The results showed that the total absorbed 15N allocated to the aboveground part was more than 60%. Compared with the control treatment (no saline-alkali, no clipping), saline-alkali increased the distribution of 15N by 5.1% in root; the 15N distribution into aboveground in the moderate clipping and saline-alkali treatment was 11.6% higher than that of the control, exhibiting over-compensatory growth of aboveground biomass and total biomass, however, 15N allocated to stem base was significantly increased by 9.5% under severe clipping level and saline-alkali addition, showing under-compensatory growth of shoot, root and total biomass. These results suggested that L. chinensis adapted to mode-rate clipping by over-compensatory growth under salt-alkali stress condition. However, L. chinensis would take a relatively conservative growth strategy through the enhanced N allocation to stem base for storage under severe saline-alkali and clipping conditions.


Subject(s)
Nitrogen , Poaceae , Alkalies , Animals , Biomass , Soil
2.
Oecologia ; 165(4): 855-64, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21191799

ABSTRACT

Productivity of semiarid grasslands is affected by soil water and nutrient availability, with water controlling net primary production under dry conditions and soil nutrients constraining biomass production under wet conditions. In order to investigate limitations on plants by the response of root-shoot biomass allocation to water and nitrogen (N) availability, a field experiment, on restoration plots with rainfed, unfertilized control plots, fertilized plots receiving N (25 kg urea-N ha(-1)) and water (irrigation simulating a wet season), was conducted at two sites with different grazing histories: moderate (MG) and heavy (HG) grazing. Irrigation and N addition had no effect on belowground biomass. Irrigation increased aboveground (ANPP) and belowground net primary production (BNPP) and rain-use efficiency based on ANPP (RUE(ANPP)), whereas N addition on rainfed plots had no effect on any of the measured parameters. N fertilizer application on irrigated plots increased ANPP and RUE(ANPP) and reduced the root fraction (RF: root dry matter/total dry matter), resulting in smaller N effects on total net primary production (NPP) and rain-use efficiency based on NPP. This suggests that BNPP should be included in evaluating ecosystem responses to resource availability from the whole-plant perspective. N effects on all measured parameters were similar on both sites. However, site HG responded to irrigation with higher ANPP and a lower RF when compared to site MG, indicating that species composition had a pronounced effect on carbon allocation pattern due to below- and aboveground niche complementarity.


Subject(s)
Agricultural Irrigation , Biomass , Environmental Monitoring , Poaceae/metabolism , Rain , China , Fertilizers , Nitrogen/metabolism , Poaceae/growth & development
3.
Ying Yong Sheng Tai Xue Bao ; 20(11): 2827-31, 2009 Nov.
Article in Chinese | MEDLINE | ID: mdl-20136023

ABSTRACT

Carbohydrates are the main energy materials for plant metabolic activities. Enough carbohydrates stored in roots are necessary for plant re-growth, its tolerance against environmental stress, and the maintenance of grassland ecosystem stability. This paper summarized the influences of grazing, nitrogen fertilization, salt stress, drought, low temperature, and low oxygen stress on the carbohydrates in grassland plants, and introduced the advanced methods of measuring root carbohydrates. It was suggested that the research emphasis in the future should be paid on the relationships between root soluble sugar components and root physio-ecological functions.


Subject(s)
Carbohydrates/physiology , Environment , Poaceae/metabolism , Poaceae/physiology , Stress, Physiological , Cold Temperature , Droughts , Oxygen/analysis , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...