Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Front Chem ; 8: 608398, 2020.
Article in English | MEDLINE | ID: mdl-33330404

ABSTRACT

In recent years, topological semimetals/metals, including nodal point, nodal line, and nodal surface semimetals/metals, have been studied extensively because of their potential applications in spintronics and quantum computers. In this study, we predict a family of materials, Zr3X (X = Al, Ga, In), hosting the nodal loop and nodal surface states in the absence of spin-orbit coupling. Remarkably, the energy variation of the nodal loop and nodal surface states in Zr3X are very small, and these topological signatures lie very close to the Fermi level. When the effect of spin-orbit coupling is considered, the nodal loop and nodal surface states exhibit small energy gaps (<25 and 35 meV, respectively) that are suitable observables that reflect the spin-orbit coupling response of these topological signatures and can be detected in experiments. Moreover, these compounds are dynamically stable, and they consequently form potential material platforms to study nodal loop and nodal surface semimetals.

2.
Huan Jing Ke Xue ; 36(12): 4436-43, 2015 Dec.
Article in Chinese | MEDLINE | ID: mdl-27011978

ABSTRACT

Hydrology and Water Resources Bureau of Guizhou Province, Guiyang 550002, China) Abstract: In order to explore the distribution characteristics of phytoplankton functional groups, eutrophication characteristics and response of phytoplankton functional groups to eutrophication in Xiaoguan Reservoir, phytoplankton and water samples were taken once a week from 25th July 2014 to 27th September 2014. The results showed that there were 22 phytoplankton functional groups, groups S1, D, J, B, G, MP, L0, SN, X1, Y, Xph, F, T and W1 were comparatively common functional groups, Wherein, S1, D and J were the dominant functional groups. Weekly dynamics of phytoplankton functional groups were: S1-->S1-->S1-->S1-->S1--S1-->S1-->J/D/S1-->Sl1- >/1D. group Sl1dominated over other groups, the cell abundance of S1 appeared two peaks at week 5 and week 7 respectively, but there was a slump at week 8, and rose again at last, compared to two peaks before, the cell abundance had dropped from 108cells · L⁻¹ to 107cells · L⁻¹ Water flush caused by discharge gate opening artificially was the main reason. Based on the three methods of eutrophication evaluation, the water was in moderately eutrophic and eutrophic states in Xiaoguan Reservoir in the summer of 2014. Multivariate analysis (RDA) indicated transparency was the main factor affecting the distribution of phytoplankton functional groups, and nutrients were no longer the limiting factor. The study suggested that phytoplankton functional groups could make a good response to eutrophication: groups S1 and J adapted to the turbid eutrophic water bodies, D adapted to shallow turbid waters and was sensitive to nutrient depletion. Also, common functional groups like G, X1, WW1 F etc. mostly adapted to eutrophic water bodies.


Subject(s)
Eutrophication , Phytoplankton , China , Environmental Monitoring , Seasons , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...