Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 10(11): e31779, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38868040

ABSTRACT

Porcine circovirus types 2 (PCV2) and 3 (PCV3) are the two most prevalent porcine circoviruses in China, all of which can infect swine herds and cause serious diseases. To detect coinfection with PCV2 and PCV3, primers and probes for duplex PCV2 and PCV3 real-time PCR were designed to target their cap genes based on the constructed plasmids pUC57-PCV2 and pUC57-PCV3. The established duplex PCV2 and PCV3 real-time PCRs were specific to PCV2 and PCV3 and showed no cross-reactions with other porcine viral pathogens. The limit of detection was 5 and 50 copies for the PCV2 and PCV3 plasmids, respectively. The intra- and interassay repeatability had coefficients of variation below 3 %. The established methods were used to analyze clinical samples from Liaoning and Jilin provinces of China. The coinfection rates of PCV2 and PCV3 in pigs extensively fed in Liaoning and Jilin, large-scale farmed pigs in Liaoning and large-scale farmed pigs in Jilin were 15.0 % (6/40), 36.7 % (11/30) and 35.4 % (62/175), respectively. This study established a useful duplex PCV2 and PCV3 real-time PCR method that can be used for the detection of PCV2 and PCV3 in local clinical samples.

2.
Virus Res ; 326: 199059, 2023 03.
Article in English | MEDLINE | ID: mdl-36731629

ABSTRACT

Feline coronavirus (FCoV) includes two biotypes: feline infectious peritonitis virus (FIPV) and feline enteric coronavirus (FECV). Although both biotypes can infect cats, their pathogenicities differ. The FIPV biotype is more virulent than the FECV biotype and can cause peritonitis or even death in cats, while most FECV biotypes do not cause lesions. Even pathogenic strains of the FECV biotype can cause only mild enteritis because of their very low virulence. This article reviews recent progress in FCoV research with regard to FCoV etiological characteristics; epidemiology; clinical symptoms and pathological changes; pathogenesis; and current diagnosis, prevention and treatment methods. It is hoped that this review will provide a reference for further research on FCoV and other coronaviruses.


Subject(s)
Coronavirus Infections , Coronavirus, Feline , Feline Infectious Peritonitis , Cats , Animals , Coronavirus, Feline/genetics , Coronavirus Infections/diagnosis , Coronavirus Infections/veterinary , Feline Infectious Peritonitis/diagnosis
3.
Cells ; 11(24)2022 12 12.
Article in English | MEDLINE | ID: mdl-36552780

ABSTRACT

Foot-and-mouth disease virus (FMDV) poses a significant threat to the livestock industry. Through their recognition of the conserved epitopes presented by the swine leukocyte antigen (SLA), T cells play a pivotal role in the antiviral immunity of pigs. Herein, based on the peptide binding motif of SLA-2*HB01, from an original SLA-2 allele, a series of functional T-cell epitopes derived from the dominant antigen VP1 of FMDV with high binding capacity to SLA-2 were identified. Two parallel peptides, Hu64 and As64, from the O and Asia I serotypes, respectively, were both crystallized with SLA-2*HB01. Compared to SLA-1 and SLA-3, the SLA-2 structures showed the flexibility of residues in the P4, P6, and P8 positions and in their potential interface with TCR. Notably, the peptides Hu64 and As64 adopted quite similar overall conformation when bound to SLA-2*HB01. Hu64 has two different conformations, a more stable 'chair' conformation and an unstable 'boat' conformation observed in the two molecules of one asymmetric unit, whereas only a single 'chair' conformation was observed for As64. Both Hu64 and As64 could induce similar dominant T-cell activities. Our interdisciplinary study establishes a basis for the in-depth interpretation of the peptide presentation of SLA-I, which can be used toward the development of universal vaccines.


Subject(s)
Foot-and-Mouth Disease Virus , Swine , Animals , Serogroup , Epitopes, T-Lymphocyte , Peptides
4.
Gene ; 825: 146443, 2022 May 30.
Article in English | MEDLINE | ID: mdl-35337854

ABSTRACT

Both feline coronavirus (FCoV) and SARS-CoV-2 are coronaviruses that infect cats and humans, respectively. However, cats have been shown to be susceptible to SARS-CoV-2, and FCoV also had been shown to infect human. To elucidate the relationship between FCoV and SARS-CoV-2, we highlight the main characteristics of the genome, the receptor usage, and the correlation of the receptor-binding domain (RBD) of spike proteins in FCoV and SARS-CoV-2. It is demonstrated that FCoV and SARS-CoV-2 are closely related to the main characteristics of the genome, receptor usage, and RBD of spike proteins with similar furin cleavage sites. In particular, the affinity of the conserved feline angiotensin-converting enzyme 2 (fACE2) receptor to the RBD of SARS-CoV-2 suggests that cats are susceptible to SARS-CoV-2. In addition, cross-species of coronaviruses between cats and humans or other domesticated animals are also discussed. This review sheds light on cats as potential intermediate hosts for SARS-CoV-2 transmission, and cross-species transmission or zoonotic infection of FCoV and SARS-CoV-2 between cats and humans was identified.


Subject(s)
COVID-19 , Coronavirus, Feline , Animals , COVID-19/veterinary , Cats , Coronavirus, Feline/genetics , Coronavirus, Feline/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...