Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Food Chem X ; 22: 101356, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38623507

ABSTRACT

This study investigated the Maillard reaction in Baijiu and the effects of extended aging in the presence of Maillard reaction intermediates (MRIs) on aromatic compounds, particularly focusing on heterocyclic changes. MRIs with different aroma types in Baijiu aged 1-18 years and force-aged for 6 weeks were determined. Results revealed that MRIs in soy sauce aroma-type Baijiu were significantly more abundant than those in other types of Baijiu. Changes in MRIs were observed and compared in aging and forced-aging Baijiu. Additionally, the distribution and variation of heterocycles in Baijiu were examined, which revealed an increase in N-heterocycle levels but a decrease in S- and O-heterocycle levels to a certain extent. The results of this study demonstrate that the Maillard reaction during the aging of Baijiu influences heterocycle concentrations, thereby improving flavor of aged Baijiu. Research into heterocycles and the Maillard reaction may help elucidate the aromatic evolution of Baijiu with aging and provide guidance for Baijiu storage.

2.
J Cardiothorac Surg ; 19(1): 170, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38566230

ABSTRACT

BACKGROUND: Open repair of thoracoabdominal aortic aneurysm (TAAA) was characterized by significant risk of postoperative mortality and morbidity. The aim of this study was to determine the perioperative predictors of early and long-term mortality in patients undergoing open repair of TAAA. Besides, the postoperative outcomes in patients with open repair of TAAA were described. METHODS: This is a single-center retrospective study, and 146 patients with open repair of TAAA from January 4, 2011, to November 22, 2018 was involved. Categorical variables were analyzed by the Chi-square test or Fisher's exact test, and continuous variables were analyzed by the independent sample t-test and the WilCoxon rank-sum test. Multivariate Logistic regression and Cox regression were applied to identify the predictors of 30-day and long-term mortality, respectively. The Kaplan Meier curves were used to illustrate survival with the Log-rank test. RESULTS: The 30-day mortality was 9.59% (n = 14). Older than 50 years, the intraoperative volume of red blood cell (RBC) and epinephrine use were independently associated with postoperative 30-day mortality in open repair of TAAA. Long-term mortality was 17.12% (n = 25) (median of 3.5 years (IQR = 2-5 years) of follow-up). Prior open thoracoabdominal aortic aneurysm (TAAA) repair, aortic cross-clamping (ACC) time, intraoperative volume of RBC and use of epinephrine were independently correlated with long-term mortality. CONCLUSIONS: Identifying perioperative risk factors of early and long-term mortaliy is crucial for surgeons. Intraoperative volume of RBC and use of epinephrine were predictors of both early and long-term mortality. In addition, patients of advanced age, prior open repair of TAAA and prolonged ACC time should be paid more attention.


Subject(s)
Aortic Aneurysm, Thoracic , Aortic Aneurysm, Thoracoabdominal , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Humans , Aortic Aneurysm, Thoracic/complications , Treatment Outcome , Retrospective Studies , Blood Vessel Prosthesis Implantation/adverse effects , Risk Factors , Epinephrine , Postoperative Complications/etiology , Endovascular Procedures/adverse effects , Risk Assessment
3.
Signal Transduct Target Ther ; 9(1): 102, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653983

ABSTRACT

Patients with refractory immune thrombocytopenia (ITP) frequently encounter substantial bleeding risks and demonstrate limited responsiveness to existing therapies. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) present a promising alternative, capitalizing on their low immunogenicity and potent immunomodulatory effects for treating diverse autoimmune disorders. This prospective phase I trial enrolled eighteen eligible patients to explore the safety and efficacy of UC-MSCs in treating refractory ITP. The research design included administering UC-MSCs at escalating doses of 0.5 × 106 cells/kg, 1.0 × 106 cells/kg, and 2.0 × 106 cells/kg weekly for four consecutive weeks across three cohorts during the dose-escalation phase, followed by a dose of 2.0 × 106 cells/kg weekly for the dose-expansion phase. Adverse events, platelet counts, and changes in peripheral blood immunity were monitored and recorded throughout the administration and follow-up period. Ultimately, 12 (with an addition of three patients in the 2.0 × 106 cells/kg group due to dose-limiting toxicity) and six patients were enrolled in the dose-escalation and dose-expansion phase, respectively. Thirteen patients (13/18, 72.2%) experienced one or more treatment emergent adverse events. Serious adverse events occurred in four patients (4/18, 22.2%), including gastrointestinal hemorrhage (2/4), profuse menstruation (1/4), and acute myocardial infarction (1/4). The response rates were 41.7% in the dose-escalation phase (5/12, two received 1.0 × 106 cells/kg per week, and three received 2.0 × 106 cells/kg per week) and 50.0% (3/6) in the dose-expansion phase. The overall response rate was 44.4% (8/18) among all enrolled patients. To sum up, UC-MSCs are effective and well tolerated in treating refractory ITP (ClinicalTrials.gov ID: NCT04014166).


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Purpura, Thrombocytopenic, Idiopathic , Humans , Female , Male , Purpura, Thrombocytopenic, Idiopathic/therapy , Purpura, Thrombocytopenic, Idiopathic/immunology , Middle Aged , Adult , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/immunology , Umbilical Cord/cytology , Prospective Studies , Aged
4.
J Am Heart Assoc ; 13(9): e029641, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38639370

ABSTRACT

BACKGROUND: Our goal was to create a simple risk-prediction model for renal function decline after cardiac surgery to help focus renal follow-up efforts on patients most likely to benefit. METHODS AND RESULTS: This single-center retrospective cohort study enrolled 24 904 patients who underwent cardiac surgery from 2012 to 2019 at Fuwai Hospital, Beijing, China. An estimated glomerular filtration rate (eGFR) reduction of ≥30% 3 months after surgery was considered evidence of renal function decline. Relative to patients with eGFR 60 to 89 mL/min per 1.73 m2 (4.5% [531/11733]), those with eGFR ≥90 mL/min per 1.73 m2 (10.9% [1200/11042]) had a higher risk of renal function decline, whereas those with eGFR ≤59 mL/min per 1.73 m2 (5.8% [124/2129]) did not. Each eGFR stratum had a different strongest contributor to renal function decline: increased baseline eGFR levels for patients with eGFR ≥90 mL/min per 1.73 m2, transfusion of any blood type for patients with eGFR 60 to 89 mL/min per 1.73 m2, and no recovery of renal function at discharge for patients with eGFR ≤59 mL/min per 1.73 m2. Different nomograms were established for the different eGFR strata, which yielded a corrected C-index value of 0.752 for eGFR ≥90 mL/min per 1.73 m2, 0.725 for eGFR 60-89 mL/min per 1.73 m2 and 0.791 for eGFR ≤59 mL/min per 1.73 m2. CONCLUSIONS: Predictors of renal function decline over the follow-up showed marked differences across the eGFR strata. The nomograms incorporated a small number of variables that are readily available in the routine cardiac surgical setting and can be used to predict renal function decline in patients stratified by baseline eGFR.


Subject(s)
Cardiac Surgical Procedures , Glomerular Filtration Rate , Kidney , Humans , Male , Female , Retrospective Studies , Cardiac Surgical Procedures/adverse effects , Middle Aged , Risk Assessment , Aged , Risk Factors , Kidney/physiopathology , Postoperative Complications/physiopathology , Postoperative Complications/diagnosis , Postoperative Complications/epidemiology , Postoperative Complications/etiology , China/epidemiology , Predictive Value of Tests , Time Factors
5.
Environ Sci Pollut Res Int ; 31(19): 27531-27553, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38573581

ABSTRACT

The total amount of global municipal solid waste (MSW) will reach 3.5 billion tons by 2050, thereby bringing tremendous environmental pressure, especially global warming. Large amounts of greenhouse gases (GHGs) have been released during MSW management (MSWM). Accounting for GHG emissions is a prerequisite for providing recommendations on appropriate treatment options to mitigate emissions from MSWM systems. There are many methods involved in estimating emissions. This paper summarizes the computing models commonly used in each process of the integrated MSWM system and emphasizes the influence of parameters and other factors. Compared with other disposal methods, landfilling has the highest emissions, commonly estimated using first-order decay (FOD) methods. Emission reduction can be realized through waste to energy (WtE) and resource recovery measures. IPCC is commonly used for calculating direct emissions, while LCA-based models can calculate emissions including upstream and downstream processes, whose results depend on assumptions and system boundaries. The estimation results of models vary greatly and are difficult to compare with each other. Besides, large gaps exist between the default emission factors (EFs) provided by models and those F measured in specific facilities. These findings provide a systematic view for a bettering understanding of MSW emissions as well as the estimating methods and also reveal the key points that need be developed in the future.


Subject(s)
Greenhouse Gases , Refuse Disposal , Solid Waste , Greenhouse Gases/analysis , Refuse Disposal/methods , Waste Management/methods , Models, Theoretical , Air Pollutants/analysis , Environmental Monitoring/methods
6.
Bioresour Technol ; 399: 130608, 2024 May.
Article in English | MEDLINE | ID: mdl-38499202

ABSTRACT

A novel porous manganese and nitrogen co-doped biochar (Mn-N@SBC) was synthesized via one-step pyrolysis, utilizing loofah agricultural waste as the precursor and NaHCO3 as the activator. The behavior of bisphenol A adsorbed on Mn-N@SBC was evaluated using static batch adsorption experiments. Compared to direct manganese-nitrogen co-doping, co-doping based on NaHCO3 activation significantly increased the specific surface area (231 to 1027 m2·g-1) and adsorption capacity (15 to 351 mg·g-1). Wide pH (2-10) and good resistance to cation/anion, humic acid and actual water demonstrated the robust adaptability of Mn-N@SBC to environmental factors. The significantly reduced specific surface area after adsorption, adverse effects of ethanol and phenanthrene on the removal of bisphenol A, and theoretically predicted interaction sites indicated the primary adsorption mechanisms involved pore filling, hydrophobicity, and π-π-electron-donor-acceptor interaction. This work presented an approach to create high-efficiency adsorbents from agricultural waste, offering theoretical and practical guidance for the removal of pollutants.


Subject(s)
Benzhydryl Compounds , Manganese , Phenols , Water Pollutants, Chemical , Sodium Bicarbonate , Nitrogen/chemistry , Density Functional Theory , Charcoal/chemistry , Adsorption , Water Pollutants, Chemical/chemistry , Kinetics
7.
Transfusion ; 64(3): 561-563, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38488297
8.
World J Urol ; 42(1): 17, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38197976

ABSTRACT

PURPOSE: Kidney stone disease (KSD) is a common urological disease, but its pathogenesis remains unclear. In this study, we screened KSD-related hub genes using bioinformatic methods and predicted the related pathways and potential drug targets. METHODS: The GSE75542 and GSE18160 datasets in the Gene Expression Omnibus (GEO) were selected to identify common differentially expressed genes (DEGs). We conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses to identify enriched pathways. Finally, we constructed a hub gene-miRNA network and drug-DEG interaction network. RESULTS: In total, 44 upregulated DEGs and 1 downregulated DEG were selected from the GEO datasets. Signaling pathways, such as leukocyte migration, chemokine activity, NF-κB, TNF, and IL-17, were identified in GO and KEGG. We identified 10 hub genes using Cytohubba. In addition, 21 miRNAs were predicted to regulate 4 or more hub genes, and 10 drugs targeted 2 or more DEGs. LCN2 expression was significantly different between the GEO datasets. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses showed that seven hub gene expressions in HK-2 cells with CaOx treatment were significantly higher than those in the control group. CONCLUSION: The 10 hub genes identified, especially LCN2, may be involved in kidney stone occurrence and development, and may provide new research targets for KSD diagnosis. Furthermore, KSD-related miRNAs may be targeted for the development of novel drugs for KSD treatment.


Subject(s)
Kidney Calculi , MicroRNAs , Humans , Kidney Calculi/drug therapy , Kidney Calculi/genetics , MicroRNAs/genetics , Biomarkers , Cell Movement , Computational Biology
9.
Foods ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38254531

ABSTRACT

Solid-state distillation is a distinctive process for extracting the baijiu aroma compounds that determine the flavor character of baijiu. In this study, the changes in various chemical properties of the aroma compounds in three classical Jiangxiangxing baijiu fermented grain distillation processes were analyzed. The changes in the aroma compounds in the instantaneous distillates were quantified and correlation analyzes were conducted. The results showed that the effect of the aroma compounds was greater than the differences between the fermented grains. Eleven representative aroma compounds were selected to develop the kinetic models describing two opposing changes. For the regulation of the Jiangxiangxing baijiu aroma compounds, their recovery rates were calculated using a kinetic model. A comprehensive comparison of the recovery rates of the characteristic aroma and other aroma compounds at different cut-off values revealed that the optimum recovery rate of the characteristic aroma of Jiangxiangxing baijiu 2,3,5,6-tetramethylpyrazine was 14.53% at cut-off values of 3.9 and 19.8 min. In this study, representative changes in the aroma compounds and the selection of cut-off values to regulate the baijiu distillation aroma were proposed.

10.
J Agric Food Chem ; 72(3): 1695-1707, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38194670

ABSTRACT

Long-term storage Baijiu has an appealing sensory property, yet the chemical makeup is rarely reported. This study investigated a 30-year-old Jiangxiangxing (JXX) Baijiu and recognized and measured 69 aroma compounds. 3-Methyl-2,4-nonanedione (2.76 µg/L), 2,5-dimethyl-4-hydroxy-3(2H)-furanone (HDMF, 46.2 µg/L), 2-ethyl-4-hydroxy-5-methyl-3(2H)-furanone (HEMF, 61.7 µg/L), and piperitone (3.66 µg/L) were detected for the first time in Baijiu. Compared with 3-year-old JXX Baijiu, 24 compounds were significantly higher in the 30-year-old, mainly including furans, pyrazines, and aromatics. Notably, 4,5-dimethyl-3-hydroxy-2(5H)-furanone (sotolon), HDMF, HEMF, vanillin, acetovanillone, and alkyl pyrazines in 30-year-old JXX Baijiu were 2-7 times higher than those of a 3-year-old, and they increased steadily during aging for 3, 15, and 30 years, assumed to be associated with the aging aroma. Following 24 months of storing JXX Baijiu under different conditions, the pottery significantly promoted the synthesis of sotolon, HDMF, HEMF, and alkyl pyrazines. These findings suggest that pottery is a potential catalyst for enhancing aged Baijiu.


Subject(s)
Odorants , Organic Chemicals , Odorants/analysis , Pyrazines , Furans/chemistry
11.
Medicine (Baltimore) ; 103(4): e37057, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38277516

ABSTRACT

BACKGROUND: Cancer of unknown primary (CUP) is a very challenging disease, accounting for 2% to 9% of all new cancer cases. This type of tumor is a heterogeneous tumor whose primary site cannot be determined by standard examination. It has the characteristics of early metastasis, strong aggressiveness, and unpredictable mode of metastasis. Studies have shown that there is no consensus on the treatment of CUP and that there is a wide range of individual differences. In most cases, surgical removal of tumor is the most typical treatment for pelvic tumors. Herein, we report a case of a large pelvic tumor of unknown origin that had compressed the sigmoid colon and ureter and was completely removed by surgery. Postoperative diagnosis was pelvic metastatic squamous cell carcinoma. CASE SUMMARY: A 68-year-old man with pelvic tumor who initially complained of recurrent low back pain and painful urination. The mass was initially diagnosed as a pelvic tumor of unknown origin. The patient underwent complete resection of the tumor by laparotomy. The tumor was pathologically diagnosed as squamous cell carcinoma. CONCLUSION: Based on the treatment experience of this case, surgery alone cannot improve the poor prognosis of CUP. Since chemotherapy and immunotherapy have achieved promising efficacy in various cancers, and immunotherapy has the characteristics of low side effects and good tolerability, we recommend that patients with CUP should receive chemotherapy and/or immunotherapy for better survival outcomes.


Subject(s)
Carcinoma, Squamous Cell , Hydronephrosis , Neoplasms, Unknown Primary , Pelvic Neoplasms , Ureteral Obstruction , Male , Humans , Aged , Neoplasms, Unknown Primary/pathology , Constriction, Pathologic , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/surgery , Carcinoma, Squamous Cell/pathology , Hydronephrosis/etiology , Hydronephrosis/surgery , Ureteral Obstruction/etiology , Ureteral Obstruction/surgery
12.
J Hazard Mater ; 465: 133185, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38064950

ABSTRACT

In the thermal treatment of municipal solid waste incineration fly ash (FA), the presence of chlorides leads to the pronounced volatilization of heavy metals at high temperature, making heavy metals stabilization challenging. Conventional washing processes struggle to remove chlorides completely, and even minor residual chlorides can lead to significant heavy metal volatilization. This study innovatively applied iron(III) sulfate as a chlorine depleting agent, which can form FeCl3 (boiling point 316 °C) and volatilize to remove the residual chlorides at below 500 °C, thus preventing the chlorination and volatilization of heavy metals at 600-1000 °C. Using water-washed FA to produce lightweight aggregate (LWA) preparation, after adding iron(III) sulfate, the volatilization rates of Pb and Cd at 1140 °C decreased to 5.4% and 9.3%, respectively, a reduction of 82.8% and 84.1% compared to before its addition. The LWA met standard requirements in both performance and heavy metal leaching toxicity. The mechanism was further studied through thermodynamic equilibrium calculations and heating experiments of pure chemicals. This study presents novel approaches and insights for suppressing the volatilization of heavy metals in FA at high temperature, thereby promoting the advancement of thermal treatment techniques and the safe, resourceful disposal of FA.

13.
Sci Total Environ ; 912: 168764, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38000740

ABSTRACT

This study aims to investigate the influence of seasonal variations on Volatile fatty acids (VFAs) production from food waste (FW) and to quantify their impact. Results of batch experiments with external pH control indicated that the properties of FW exhibited significant seasonal variations and were markedly different from kitchen waste (KW). The spring group demonstrated the highest VFA concentration and VFA/SCOD, at 31.24 g COD/L and 92.20 % respectively, which were 1.22 and 1.27 times higher than those observed in the summer season. The combined proportion of acetic acid and butyric acid accounted for 81.10 % of the total VFAs in spring, suggesting the highest applicability to the carbon source. The VFA content of all seasonal groups in descending order was butyric acid, propionic acid and acetic acid. Carbohydrates, along with spicy and citrusy substances, promoted the conversion of total VFA and butyric acid, while proteins and lipids favored the production of acetic acid and propionic acid.


Subject(s)
Propionates , Refuse Disposal , Fermentation , Seasons , Food Loss and Waste , Anaerobiosis , Food , Bioreactors , Fatty Acids, Volatile , Butyric Acid , Acetic Acid , Hydrogen-Ion Concentration
14.
Clin Epidemiol ; 15: 1145-1157, 2023.
Article in English | MEDLINE | ID: mdl-38076638

ABSTRACT

Background: To derive and validate a machine learning (ML) prediction model of acute kidney injury (AKI) that could be used for AKI surveillance and management to improve clinical outcomes. Methods: This retrospective cohort study was conducted in Fuwai Hospital, including patients aged 18 years and above undergoing cardiac surgery admitted between January 1, 2017, and December 31, 2018. Seventy percent of the observations were randomly selected for training and the remaining 30% for testing. The demographics, comorbidities, laboratory examination parameters, and operation details were used to construct a prediction model for AKI by logistic regression and eXtreme gradient boosting (Xgboost). The discrimination of each model was assessed on the test cohort by the area under the receiver operator characteristic (AUROC) curve, while calibration was performed by the calibration plot. Results: A total of 15,880 patients were enrolled in this study, and 4845 (30.5%) had developed AKI. Xgboost model had the higher discriminative ability compared with logistic regression (AUROC, 0.849 [95% CI, 0.837-0.861] vs 0.803[95% CI 0.790-0.817], P<0.001) in the test dataset. The estimated glomerular filtration (eGFR) and creatine on intensive care unit (ICU) arrival are the two most important prediction parameters. A SHAP summary plot was used to illustrate the effects of the top 15 features attributed to the Xgboost model. Conclusion: ML models can provide clinical decision support to determine which patients should focus on perioperative preventive treatment to preemptively reduce acute kidney injury by predicting which patients are not at risk.

15.
Phys Rev Lett ; 131(18): 186901, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37977607

ABSTRACT

Transition metal dichalcogenide heterostructures have been extensively studied as a platform for investigating exciton physics. While heterobilayers such as WSe_{2}/MoSe_{2} have received significant attention, there has been comparatively less research on heterotrilayers, which may offer new excitonic species and phases, as well as unique physical properties. In this Letter, we present theoretical and experimental investigations on the emission properties of quadrupolar excitons (QXs), a newly predicted type of exciton, in a WSe_{2}/MoSe_{2}/WSe_{2} heterotrilayer device. Our findings reveal that the optical brightness or darkness of QXs is determined by horizontal mirror symmetry and valley and spin selection rules. Additionally, the emission intensity and energy of both bright and dark QXs can be adjusted by applying an out-of-plane electric field, due to changes in hole distribution and the Stark effect. These results not only provide experimental evidence for the existence of QXs in heterotrilayers but also uncover their novel properties, which have the potential to drive the development of new exciton-based applications.

16.
Article in English | MEDLINE | ID: mdl-37874797

ABSTRACT

Organic compounds exhibit great potential as sustainable, tailorable, and environmentally friendly electrode materials for rechargeable batteries. However, the intrinsic defects of organic electrodes, including solubility, low ionic conductivity, and restricted electroactivity sites, will inevitably decrease the cycling life and capacity. We herein designed and prepared nanostructured porous polymers (NPP) with a simple one-pot method to overcome the above defects. Theoretical calculations and experimental results demonstrate that the as-synthesized NPP exhibited low volume expansion, molecular-structural distortion, and a gradual function activation process during cycling, thus exhibiting superior, high, and durable lithium storage. The gradual molecular distortion during the lithium storage processes provides more redox-active sites for Li storage, increasing the Li-storage capacity. Ex situ spectrum studies reveal the redox reaction mechanism of Li storage and demonstrate a gradual activation process during the repeated charging/discharging until the full storage of 18 Li ions is achieved. Additionally, a real-time observation on the NPP anode by in situ transmission electron microscope reveals a slight volume expansion during the repeating lithiation and delithiation processes, ensuring its structural integrity during cycling. This quantitative work for high-durability lithium storage could be of immediate benefit for designing organic electrode materials.

17.
J Am Chem Soc ; 145(43): 23764-23770, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37703183

ABSTRACT

Lithium (Li) metal batteries (LMBs) are regarded as one of the most promising energy storage systems due to their ultrahigh theoretical energy density. However, the high reactivity of the Li anodes leads to the decomposition of the electrolytes, presenting a huge impediment to the practical application of LMBs. The routine trial-and-error methods are inefficient in designing highly stable solvent molecules for the Li metal anode. Herein, a data-driven approach is proposed to probe the origin of the reductive stability of solvents and accelerate the molecular design for advanced electrolytes. A large database of potential solvent molecules is first constructed using a graph theory-based algorithm and then comprehensively investigated by both first-principles calculations and machine learning (ML) methods. The reductive stability of 99% of the electrolytes decreases under the dominance of ion-solvent complexes, according to the analysis of the lowest unoccupied molecular orbital (LUMO). The LUMO energy level is related to the binding energy, bond length, and orbital ratio factors. An interpretable ML method based on Shapley additive explanations identifies the dipole moment and molecular radius as the most critical descriptors affecting the reductive stability of coordinated solvents. This work not only affords fruitful data-driven insight into the ion-solvent chemistry but also unveils the critical molecular descriptors in regulating the solvent's reductive stability, which accelerates the rational design of advanced electrolyte molecules for next-generation Li batteries.

18.
Nat Commun ; 14(1): 5550, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689704

ABSTRACT

Graphene has aroused great attention due to the intriguing properties associated with its low-energy Dirac Hamiltonian. When graphene is coupled with a correlated insulating substrate, electronic states that cannot be revealed in either individual layer may emerge in a synergistic manner. Here, we theoretically study the correlated and topological states in Coulomb-coupled and gate-tunable graphene-insulator heterostructures. By electrostatically aligning the electronic bands, charge carriers transferred between graphene and the insulator can yield a long-wavelength electronic crystal at the interface, exerting a superlattice Coulomb potential on graphene and generating topologically nontrivial subbands. This coupling can further boost electron-electron interaction effects in graphene, leading to a spontaneous bandgap formation at the Dirac point and interaction-enhanced Fermi velocity. Reciprocally, the electronic crystal at the interface is substantially stabilized with the help of cooperative interlayer Coulomb coupling. We propose a number of substrate candidates for graphene to experimentally demonstrate these effects.

19.
Environ Pollut ; 335: 122358, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37567408

ABSTRACT

Machine learning (ML) and deep learning (DL) possess excellent advantages in data analysis (e.g., feature extraction, clustering, classification, regression, image recognition and prediction) and risk assessment and management in environmental ecology and health (EEH). Considering the rapid growth and increasing complexity of data in EEH, it is of significance to summarize recent advances and applications of ML and DL in EEH. This review summarized the basic processes and fundamental algorithms of the ML and DL modeling, and indicated the urgent needs of ML and DL in EEH. Recent research hotspots such as environmental ecology and restoration, environmental fate of new pollutants, chemical exposures and risks, chemical hazard identification and control were highlighted. Various applications of ML and DL in EEH demonstrate their versatility and technological revolution, and present some challenges. The perspective of ML and DL in EEH were further outlined to promote the innovative analysis and cultivation of the ML-driven research paradigm.


Subject(s)
Deep Learning , Machine Learning , Algorithms , Environmental Health , Ecology
20.
PLoS One ; 18(8): e0288229, 2023.
Article in English | MEDLINE | ID: mdl-37535639

ABSTRACT

Based on the concept of bionics and the connotation of city financial ecology, this study constructs a 3-level and 27-indicator evaluation index system, including financial ecology growth, soil, and air. This study uses the entropy-TOPSIS model to weigh indicators objectively and evaluate the financial ecology of 343 China's prefecture-level cities during 2009-2016. This study uses the DEA-Tobit method to assess the financing efficiency of 4013 China's strategic emerging listed firms during 2010-2017 and runs random-effect Tobit panel regressions. Regression results suggest that a city's financial ecology overall has a positive effect on strategic emerging firms' financing efficiency. Therefore, the government should: improve the multi-tiered financial market system and encourage financial innovation; transform the economic growth model and optimize the industrial structure; establish an information-sharing mechanism and construct a social credit system.


Subject(s)
Bionics , Ecology , Cities , Economic Development , China , Efficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...