Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Robot ; 9(90): eadj8124, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809998

ABSTRACT

Neuromorphic vision sensors or event cameras have made the visual perception of extremely low reaction time possible, opening new avenues for high-dynamic robotics applications. These event cameras' output is dependent on both motion and texture. However, the event camera fails to capture object edges that are parallel to the camera motion. This is a problem intrinsic to the sensor and therefore challenging to solve algorithmically. Human vision deals with perceptual fading using the active mechanism of small involuntary eye movements, the most prominent ones called microsaccades. By moving the eyes constantly and slightly during fixation, microsaccades can substantially maintain texture stability and persistence. Inspired by microsaccades, we designed an event-based perception system capable of simultaneously maintaining low reaction time and stable texture. In this design, a rotating wedge prism was mounted in front of the aperture of an event camera to redirect light and trigger events. The geometrical optics of the rotating wedge prism allows for algorithmic compensation of the additional rotational motion, resulting in a stable texture appearance and high informational output independent of external motion. The hardware device and software solution are integrated into a system, which we call artificial microsaccade-enhanced event camera (AMI-EV). Benchmark comparisons validated the superior data quality of AMI-EV recordings in scenarios where both standard cameras and event cameras fail to deliver. Various real-world experiments demonstrated the potential of the system to facilitate robotics perception both for low-level and high-level vision tasks.


Subject(s)
Algorithms , Equipment Design , Robotics , Saccades , Visual Perception , Robotics/instrumentation , Humans , Saccades/physiology , Visual Perception/physiology , Motion , Software , Reaction Time/physiology , Biomimetics/instrumentation , Fixation, Ocular/physiology , Eye Movements/physiology , Vision, Ocular/physiology
2.
Adv Mater ; 35(10): e2208648, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36563167

ABSTRACT

Timely administration of key medications toward patients with sudden diseases is critical to saving lives. However, slow transport of first-aid therapeutics and the potential absence of trained people for drug usage can lead to severe injuries or even death. Herein, an unmanned aerial vehicle (UAV)-mediated first-aid system for targeted delivery (uFAST) is developed. It allows unattended administration of emergency therapeutics-loaded transdermal microneedle (MN) patches toward patients to relieve symptoms by a contact-triggered microneedle applicator (CTMA). The implementability and safety of the uFAST for first aid is demonstrated in a severe hypoglycemic pig model by automatically delivering a glucagon patch with immediate and bioresponsive dual release modes. This platform technique may facilitate the development of UAV-mediated first-aid treatments for other sudden diseases.


Subject(s)
First Aid , Unmanned Aerial Devices , Animals , Swine , Glucagon , Hypoglycemic Agents , Needles , Drug Delivery Systems
3.
Sci Robot ; 7(66): eabm5954, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35507682

ABSTRACT

Aerial robots are widely deployed, but highly cluttered environments such as dense forests remain inaccessible to drones and even more so to swarms of drones. In these scenarios, previously unknown surroundings and narrow corridors combined with requirements of swarm coordination can create challenges. To enable swarm navigation in the wild, we develop miniature but fully autonomous drones with a trajectory planner that can function in a timely and accurate manner based on limited information from onboard sensors. The planning problem satisfies various task requirements including flight efficiency, obstacle avoidance, and inter-robot collision avoidance, dynamical feasibility, swarm coordination, and so on, thus realizing an extensible planner. Furthermore, the proposed planner deforms trajectory shapes and adjusts time allocation synchronously based on spatial-temporal joint optimization. A high-quality trajectory thus can be obtained after exhaustively exploiting the solution space within only a few milliseconds, even in the most constrained environment. The planner is finally integrated into the developed palm-sized swarm platform with onboard perception, localization, and control. Benchmark comparisons validate the superior performance of the planner in trajectory quality and computing time. Various real-world field experiments demonstrate the extensibility of our system. Our approach evolves aerial robotics in three aspects: capability of cluttered environment navigation, extensibility to diverse task requirements, and coordination as a swarm without external facilities.


Subject(s)
Robotics , Sports , Algorithms , Benchmarking , Humans , Speech Disorders
4.
Theranostics ; 10(13): 5719-5735, 2020.
Article in English | MEDLINE | ID: mdl-32483414

ABSTRACT

The Axl gene is known to encode for a receptor tyrosine kinase involved in the metastasis process of cancer. In this study, we investigated the underlying molecular mechanism of Axl alternative splicing. Methods: The expression levels of PTBP1 in hepatocellular carcinoma (HCC) tissues were obtained from TCGA samples and cell lines. The effect of Axl-L, Axl-S, and PTBP1 on cell growth, migration, invasion tumor formation, and metastasis of liver cancer cells were measured by cell proliferation, wound-healing, invasion, xenograft tumor formation, and metastasis. Interaction between PTBP1 and Axl was explored using cross-link immunoprecipitation, RNA pull-down assays and RNA immunoprecipitation assays. Results: Knockdown of the PTBP1 and exon 10 skipping isoform of Axl (Axl-S), led to impaired invasion and metastasis in hepatoma cells. Immunoprecipitation results indicated that Axl-S protein binds more robustly with Gas6 ligand than Axl-L (exon 10 including) and is more capable of promoting phosphorylation of ERK and AKT proteins. Furthermore, cross-link immunoprecipitation and RNA-pulldown assays revealed that PTBP1 binds to the polypyrimidine sequence(TCCTCTCTGTCCTTTCTTC) on Axl-Intron 9. MS2-GFP-IP experiments demonstrated that PTBP1 competes with U2AF2 for binding to the aforementioned polypyrimidine sequence, thereby inhibiting alternative splicing and ultimately promoting Axl-S production. Conclusion: Our results highlight the biological significance of Axl-S and PTBP1 in tumor metastasis, and show that PTBP1 affects the invasion and metastasis of hepatoma cells by modulating the alternative splicing of Axl exon 10.


Subject(s)
Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Liver Neoplasms/genetics , Polypyrimidine Tract-Binding Protein/metabolism , Proto-Oncogene Proteins/genetics , Receptor Protein-Tyrosine Kinases/genetics , Alternative Splicing/genetics , Animals , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Exons/genetics , Gene Expression Regulation, Neoplastic/genetics , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Liver/pathology , Liver Neoplasms/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , Polypyrimidine Tract-Binding Protein/genetics , Proto-Oncogene Proteins/metabolism , RNA Precursors/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , Receptor Protein-Tyrosine Kinases/metabolism , Splicing Factor U2AF/genetics , Splicing Factor U2AF/metabolism , Xenograft Model Antitumor Assays , Axl Receptor Tyrosine Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...