Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Article in English | MEDLINE | ID: mdl-38864778

ABSTRACT

Ion mobility spectrometry (IMS) is a gas-phase analytical technique that separates ions with different sizes and shapes and is compatible with mass spectrometry (MS) to provide an additional separation dimension. The rapid nature of the IMS separation combined with the high sensitivity of MS-based detection and the ability to derive structural information on analytes in the form of the property collision cross section (CCS) makes IMS particularly well-suited for characterizing complex samples in -omics applications. In such applications, the quality of CCS from IMS measurements is critical to confident annotation of the detected components in the complex -omics samples. However, most IMS instrumentation in mainstream use requires calibration to calculate CCS from measured arrival times, with the most notable exception being drift tube IMS measurements using multifield methods. The strategy for calibrating CCS values, particularly selection of appropriate calibrants, has important implications for CCS accuracy, reproducibility, and transferability between laboratories. The conventional approach to CCS calibration involves explicitly defining calibrants ahead of data acquisition and crucially relies upon availability of reference CCS values. In this work, we present a novel reference-free approach to CCS calibration which leverages trends among putatively identified features and computational CCS prediction to conduct calibrations post-data acquisition and without relying on explicitly defined calibrants. We demonstrated the utility of this reference-free CCS calibration strategy for proteomics application using high-resolution structures for lossless ion manipulations (SLIM)-based IMS-MS. We first validated the accuracy of CCS values using a set of synthetic peptides and then demonstrated using a complex peptide sample from cell lysate.

2.
Exp Gerontol ; 190: 112422, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38599502

ABSTRACT

The onset of Alzheimer's disease is related to neuron damage caused by massive deposition of Aß in the brain. Recent studies suggest that excessive Aß in the brain mainly comes from peripheral blood, and BBB is the key to regulate Aß in and out of the brain. In this study, we explored the pathogenesis of AD from the perspective of Aß transport through the BBB and the effect of QKL injection in AD mice. The results showed that QKL could improve the cognitive dysfunction of AD mice, decrease the level of Aß and Aß transporter-RAGE, which was supported by the results of network pharmacology, molecular docking and molecular dynamics simulation. In conclusion, RAGE is a potential target for QKL's therapeutic effect on AD.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Disease Models, Animal , Receptor for Advanced Glycation End Products , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Animals , Receptor for Advanced Glycation End Products/metabolism , Mice , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/drug effects , Male , Molecular Docking Simulation , Mice, Transgenic , Molecular Dynamics Simulation , Brain/metabolism , Brain/drug effects , Brain/pathology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/metabolism
3.
Nat Chem Biol ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38302607

ABSTRACT

The leaf-cutter ant fungal garden ecosystem is a naturally evolved model system for efficient plant biomass degradation. Degradation processes mediated by the symbiotic fungus Leucoagaricus gongylophorus are difficult to characterize due to dynamic metabolisms and spatial complexity of the system. Herein, we performed microscale imaging across 12-µm-thick adjacent sections of Atta cephalotes fungal gardens and applied a metabolome-informed proteome imaging approach to map lignin degradation. This approach combines two spatial multiomics mass spectrometry modalities that enabled us to visualize colocalized metabolites and proteins across and through the fungal garden. Spatially profiled metabolites revealed an accumulation of lignin-related products, outlining morphologically unique lignin microhabitats. Metaproteomic analyses of these microhabitats revealed carbohydrate-degrading enzymes, indicating a prominent fungal role in lignocellulose decomposition. Integration of metabolome-informed proteome imaging data provides a comprehensive view of underlying biological pathways to inform our understanding of metabolic fungal pathways in plant matter degradation within the micrometer-scale environment.

4.
iScience ; 27(2): 108769, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303689

ABSTRACT

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies-biomarkers of autoimmunity-is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar time frame. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

5.
Metab Eng ; 80: 163-172, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37778408

ABSTRACT

Aconitic acid is an unsaturated tricarboxylic acid that is attractive for its potential use in manufacturing biodegradable and biocompatible polymers, plasticizers, and surfactants. Previously Aspergillus pseudoterreus was engineered as a platform to produce aconitic acid by deleting the cadA (cis-aconitic acid decarboxylase) gene in the itaconic acid biosynthetic pathway. In this study, the aconitic acid transporter gene (aexA) was identified using comparative global discovery proteomics analysis between the wild-type and cadA deletion strains. The protein AexA belongs to the Major Facilitator Superfamily (MFS). Deletion of aexA almost abolished aconitic acid secretion, while its overexpression led to a significant increase in aconitic acid production. Transportation of aconitic acid across the plasma membrane is a key limiting step in its production. In vitro, proteoliposome transport assay further validated AexA's function and substrate specificity. This research provides new approaches to efficiently pinpoint and characterize exporters of fungal organic acids and accelerate metabolic engineering to improve secretion capability and lower the cost of bioproduction.


Subject(s)
Aconitic Acid , Aspergillus , Aconitic Acid/metabolism , Aspergillus/genetics , Aspergillus/metabolism , Membrane Transport Proteins/genetics , Metabolic Engineering , Succinates/metabolism
6.
Mil Med Res ; 10(1): 48, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37853489

ABSTRACT

BACKGROUND: Physiological and biochemical processes across tissues of the body are regulated in response to the high demands of intense physical activity in several occupations, such as firefighting, law enforcement, military, and sports. A better understanding of such processes can ultimately help improve human performance and prevent illnesses in the work environment. METHODS: To study regulatory processes in intense physical activity simulating real-life conditions, we performed a multi-omics analysis of three biofluids (blood plasma, urine, and saliva) collected from 11 wildland firefighters before and after a 45 min, intense exercise regimen. Omics profiles post- versus pre-exercise were compared by Student's t-test followed by pathway analysis and comparison between the different omics modalities. RESULTS: Our multi-omics analysis identified and quantified 3835 proteins, 730 lipids and 182 metabolites combining the 3 different types of samples. The blood plasma analysis revealed signatures of tissue damage and acute repair response accompanied by enhanced carbon metabolism to meet energy demands. The urine analysis showed a strong, concomitant regulation of 6 out of 8 identified proteins from the renin-angiotensin system supporting increased excretion of catabolites, reabsorption of nutrients and maintenance of fluid balance. In saliva, we observed a decrease in 3 pro-inflammatory cytokines and an increase in 8 antimicrobial peptides. A systematic literature review identified 6 papers that support an altered susceptibility to respiratory infection. CONCLUSION: This study shows simultaneous regulatory signatures in biofluids indicative of homeostatic maintenance during intense physical activity with possible effects on increased infection susceptibility, suggesting that caution against respiratory diseases could benefit workers on highly physical demanding jobs.


Subject(s)
Exercise , Multiomics , Humans , Exercise/physiology , Cytokines
7.
Cancers (Basel) ; 15(18)2023 Sep 10.
Article in English | MEDLINE | ID: mdl-37760474

ABSTRACT

A major challenge in lung cancer prevention and cure hinges on identifying the at-risk population that ultimately develops lung cancer. Previously, we reported proteomic alterations in the cytologically normal bronchial epithelial cells collected from the bronchial brushings of individuals at risk for lung cancer. The purpose of this study is to validate, in an independent cohort, a selected list of 55 candidate proteins associated with risk for lung cancer with sensitive targeted proteomics using selected reaction monitoring (SRM). Bronchial brushings collected from individuals at low and high risk for developing lung cancer as well as patients with lung cancer, from both a subset of the original cohort (batch 1: n = 10 per group) and an independent cohort of 149 individuals (batch 2: low risk (n = 32), high risk (n = 34), and lung cancer (n = 83)), were analyzed using multiplexed SRM assays. ALDH3A1 and AKR1B10 were found to be consistently overexpressed in the high-risk group in both batch 1 and batch 2 brushing specimens as well as in the biopsies of batch 1. Validation of highly discriminatory proteins and metabolic enzymes by SRM in a larger independent cohort supported their use to identify patients at high risk for developing lung cancer.

8.
Microb Cell Fact ; 22(1): 144, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537586

ABSTRACT

Efficient conversion of pentose sugars remains a significant barrier to the replacement of petroleum-derived chemicals with plant biomass-derived bioproducts. While the oleaginous yeast Rhodosporidium toruloides (also known as Rhodotorula toruloides) has a relatively robust native metabolism of pentose sugars compared to other wild yeasts, faster assimilation of those sugars will be required for industrial utilization of pentoses. To increase the rate of pentose assimilation in R. toruloides, we leveraged previously reported high-throughput fitness data to identify potential regulators of pentose catabolism. Two genes were selected for further investigation, a putative transcription factor (RTO4_12978, Pnt1) and a homolog of a glucose transceptor involved in carbon catabolite repression (RTO4_11990). Overexpression of Pnt1 increased the specific growth rate approximately twofold early in cultures on xylose and increased the maximum specific growth by 18% while decreasing accumulation of arabitol and xylitol in fast-growing cultures. Improved growth dynamics on xylose translated to a 120% increase in the overall rate of xylose conversion to fatty alcohols in batch culture. Proteomic analysis confirmed that Pnt1 is a major regulator of pentose catabolism in R. toruloides. Deletion of RTO4_11990 increased the growth rate on xylose, but did not relieve carbon catabolite repression in the presence of glucose. Carbon catabolite repression signaling networks remain poorly characterized in R. toruloides and likely comprise a different set of proteins than those mainly characterized in ascomycete fungi.


Subject(s)
Proteomics , Xylose , Xylose/metabolism , Pentoses , Glucose/metabolism
9.
Nano Lett ; 23(17): 8256-8263, 2023 09 13.
Article in English | MEDLINE | ID: mdl-37651617

ABSTRACT

Miniature two-photon microscopy has emerged as a powerful technique for investigating brain activity in freely moving animals. Ongoing research objectives include reducing probe weight and minimizing animal behavior constraints caused by probe attachment. Employing dielectric metalenses, which enable the use of sizable optical components in flat device structures while maintaining imaging resolution, is a promising solution for addressing these challenges. In this study, we designed and fabricated a titanium dioxide metalens with a wavelength of 920 nm and a high aspect ratio. Furthermore, a meta-optic two-photon microscope weighing 1.36 g was developed. This meta-optic probe has a lateral resolution of 0.92 µm and an axial resolution of 18.08 µm. Experimentally, two-photon imaging of mouse brain structures in vivo was also demonstrated. The flat dielectric metalens technique holds promising opportunities for high-performance integrated miniature nonlinear microscopy and endomicroscopy platforms in the biomedical field.


Subject(s)
Microscopy , Optical Devices , Animals , Mice , Photons
10.
Gene ; 884: 147687, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37541558

ABSTRACT

Bone morphogenetic proteins (BMPs) are key factors controlling osteoblast differentiation, which have been proved to be involved in the hard tissue formation of marine mollusks. In the present study, a member of BMPs gene (CgBMP7) was identified from Pacific oyster Crassostrea gigas (C. gigas) with the aim to understand its possible role in the regulation of shell formation under ocean acidification (OA) conditions. The open reading frame (ORF) of CgBMP7 was of 1254 bp encoding a polypeptide of 417 amino acids. The deduced amino acid sequence of CgBMP7 was comprised of one signal peptide, one prodomain and one TGF-ß domain, which shared 21.69%-61.10% identities with those from other species. The mRNA transcript of CgBMP7 was ubiquitously expressed in all the tested tissues of adult oysters with a higher expression level in mantle, notably highest in the middle fold (MF) of the three folds of mantle. The expression level of bone morphogenetic protein type I receptor (CgBMPR1B) mRNA was also highest in the MF and up-regulated dramatically post recombinant BMP7 protein (rCgBMP7) stimulation. After the blockage of BMPR1B with inhibitor LDN193189 (LDN), the mRNA expression level and phosphorylation level of CgSmad1/5/8 in mantle were decreased, and the mRNA expression levels of CgCaM and Cgengrailed-1 were down-regulated significantly. During the oysters were exposed to acidified seawater for weeks, the expression levels of CgBMP7, CgBMPR1B and CgSmad1/5/8 in the MF decreased significantly (p < 0.01) at the 4th week, and CgCaM and Cgengrailed-1 also exhibited the same variable expression patterns as CgBMP7. In addition, the growth of shell in the treatment group (pH 7.8) was slower than that in the control group (pH 8.1). These results collectively indicated that BMP7 was able to trigger the BMPR-Smad signaling pathway and involved in controlling the formation of oyster calcified shell under OA conditions.


Subject(s)
Crassostrea , Animals , Crassostrea/genetics , Crassostrea/metabolism , Hydrogen-Ion Concentration , Ocean Acidification , Seawater , RNA, Messenger/genetics , RNA, Messenger/metabolism
11.
medRxiv ; 2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37502972

ABSTRACT

Type 1 diabetes (T1D) is a chronic condition caused by autoimmune destruction of the insulin-producing pancreatic ß-cells. While it is known that gene-environment interactions play a key role in triggering the autoimmune process leading to T1D, the pathogenic mechanism leading to the appearance of islet autoantibodies - biomarkers of autoimmunity - is poorly understood. Here we show that disruption of the complement system precedes the detection of islet autoantibodies and persists through disease onset. Our results suggest that children who exhibit islet autoimmunity and progress to clinical T1D have lower complement protein levels relative to those who do not progress within a similar timeframe. Thus, the complement pathway, an understudied mechanistic and therapeutic target in T1D, merits increased attention for use as protein biomarkers of prediction and potentially prevention of T1D.

12.
Cell Rep Med ; 4(7): 101093, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37390828

ABSTRACT

Type 1 diabetes (T1D) results from autoimmune destruction of ß cells. Insufficient availability of biomarkers represents a significant gap in understanding the disease cause and progression. We conduct blinded, two-phase case-control plasma proteomics on the TEDDY study to identify biomarkers predictive of T1D development. Untargeted proteomics of 2,252 samples from 184 individuals identify 376 regulated proteins, showing alteration of complement, inflammatory signaling, and metabolic proteins even prior to autoimmunity onset. Extracellular matrix and antigen presentation proteins are differentially regulated in individuals who progress to T1D vs. those that remain in autoimmunity. Targeted proteomics measurements of 167 proteins in 6,426 samples from 990 individuals validate 83 biomarkers. A machine learning analysis predicts if individuals would remain in autoimmunity or develop T1D 6 months before autoantibody appearance, with areas under receiver operating characteristic curves of 0.871 and 0.918, respectively. Our study identifies and validates biomarkers, highlighting pathways affected during T1D development.


Subject(s)
Diabetes Mellitus, Type 1 , Insulin-Secreting Cells , Humans , Diabetes Mellitus, Type 1/diagnosis , Autoimmunity , Autoantibodies , Biomarkers
13.
Metab Eng ; 78: 72-83, 2023 07.
Article in English | MEDLINE | ID: mdl-37201565

ABSTRACT

Microbial production of valuable bioproducts is a promising route towards green and sustainable manufacturing. The oleaginous yeast, Rhodosporidium toruloides, has emerged as an attractive host for the production of biofuels and bioproducts from lignocellulosic hydrolysates. 3-hydroxypropionic acid (3HP) is an attractive platform molecule that can be used to produce a wide range of commodity chemicals. This study focuses on establishing and optimizing the production of 3HP in R. toruloides. As R. toruloides naturally has a high metabolic flux towards malonyl-CoA, we exploited this pathway to produce 3HP. Upon finding the yeast capable of catabolizing 3HP, we then implemented functional genomics and metabolomic analysis to identify the catabolic pathways. Deletion of a putative malonate semialdehyde dehydrogenase gene encoding an oxidative 3HP pathway was found to significantly reduce 3HP degradation. We further explored monocarboxylate transporters to promote 3HP transport and identified a novel 3HP transporter in Aspergillus pseudoterreus by RNA-seq and proteomics. Combining these engineering efforts with media optimization in a fed-batch fermentation resulted in 45.4 g/L 3HP production. This represents one of the highest 3HP titers reported in yeast from lignocellulosic feedstocks. This work establishes R. toruloides as a host for 3HP production from lignocellulosic hydrolysate at high titers, and paves the way for further strain and process optimization towards enabling industrial production of 3HP in the future.


Subject(s)
Lignin , Metabolic Engineering , Metabolic Engineering/methods , Lignin/metabolism
14.
Microorganisms ; 11(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37110272

ABSTRACT

Single-stranded DNA-binding proteins (SSBs) are essential for all living organisms. Whether SSBs can repair DNA double-strand breaks (DSBs) and improve the efficiency of CRISPR/Cas9-mediated genome editing has not been determined. Here, based on a pCas/pTargetF system, we constructed pCas-SSB and pCas-T4L by replacing the λ-Red recombinases with Escherichia coli SSB and phage T4 DNA ligase in pCas, respectively. Inactivation of the E. coli lacZ gene with homologous donor dsDNA increased the gene editing efficiency of pCas-SSB/pTargetF by 21.4% compared to pCas/pTargetF. Inactivation of the E. coli lacZ gene via NHEJ increased the gene editing efficiency of pCas-SSB/pTargetF by 33.2% compared to pCas-T4L/pTargetF. Furthermore, the gene-editing efficiency of pCas-SSB/pTargetF in E. coli (ΔrecA, ΔrecBCD, ΔSSB) with or without donor dsDNA did not differ. Additionally, pCas-SSB/pTargetF with donor dsDNA successfully deleted the wp116 gene in Pseudomonas sp. UW4. These results demonstrate that E. coli SSB repairs DSBs caused by CRISPR/Cas9 and effectively improves CRISPR/Cas9 genome editing in E. coli and Pseudomonas.

15.
Nat Commun ; 14(1): 2461, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117207

ABSTRACT

Multidimensional measurements using state-of-the-art separations and mass spectrometry provide advantages in untargeted metabolomics analyses for studying biological and environmental bio-chemical processes. However, the lack of rapid analytical methods and robust algorithms for these heterogeneous data has limited its application. Here, we develop and evaluate a sensitive and high-throughput analytical and computational workflow to enable accurate metabolite profiling. Our workflow combines liquid chromatography, ion mobility spectrometry and data-independent acquisition mass spectrometry with PeakDecoder, a machine learning-based algorithm that learns to distinguish true co-elution and co-mobility from raw data and calculates metabolite identification error rates. We apply PeakDecoder for metabolite profiling of various engineered strains of Aspergillus pseudoterreus, Aspergillus niger, Pseudomonas putida and Rhodosporidium toruloides. Results, validated manually and against selected reaction monitoring and gas-chromatography platforms, show that 2683 features could be confidently annotated and quantified across 116 microbial sample runs using a library built from 64 standards.


Subject(s)
Algorithms , Metabolomics , Mass Spectrometry/methods , Metabolomics/methods , Chromatography, Liquid/methods , Ion Mobility Spectrometry
16.
Article in English | MEDLINE | ID: mdl-37068015

ABSTRACT

Currently, the genus Paracoccus comprises 76 recognized species. Members of Paracoccus are mostly isolated from environmental, animal, and plant sources. This report describes and proposes a novel species of Paracoccus isolated from clinical specimens of the human ocular surface. We isolated two aerobic, Gram-stain-negative, non-spore-forming, coccoid or short rod-shaped, and non-motile strains (designated DK398T and DK608) from conjunctival sac swabs of two healthy volunteers. The results showed that the strains grew best under the conditions of 28°C, pH 7.0, and 1.0 % (w/v) NaCl. Sequence analysis based on the 16S rRNA gene showed that strains DK398T and DK608 were members of Paracoccus, most similar to Paracoccus laeviglucosivorans 43PT (98.54 and 98.62 %), Paracoccus litorisediminis GHD-05T (98.34 and 98.41 %), and Paracoccus limmosus NB88T (98.21 and 98.29 %). Phenotypic analysis showed that DK398T and DK608 were positive for catalase and oxidase, negative for producing N-acetyl-ß-glucosaminic acid, arginine dihydrolase, and ß-glucuronidase but positive for leucine arylamidase. The predominant isoprenoid quinone was Q-10, and the major polar lipids included phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, and an unidentified glycolipid. The major fatty acids (>10%) were summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The meso-diaminopimelic acid was found in the cell wall peptidoglycan of DK398T. The major cell wall sugars were ribose and galactose. Based on the results of phylogenetic analyses, low (<83.22 %) average nucleotide identity, digital DNA-DNA hybridization (<26.0%), chemotaxonomic analysis, and physiological properties, strain DK398T represents a novel species of the genus Paracoccus, for which the name Paracoccus shanxieyensis sp. nov. is proposed. The type strain is DK398T (=CGMCC 1.17227T=JCM 33719T).


Subject(s)
Fatty Acids , Paracoccus , Animals , Humans , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry , Bacterial Typing Techniques , DNA, Bacterial/genetics , Base Composition
17.
Biotechnol Biofuels Bioprod ; 16(1): 53, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36991437

ABSTRACT

BACKGROUND: Fuels and chemicals derived from non-fossil sources are needed to lessen human impacts on the environment while providing a healthy and growing economy. 3-hydroxypropionic acid (3-HP) is an important chemical building block that can be used for many products. Biosynthesis of 3-HP is possible; however, low production is typically observed in those natural systems. Biosynthetic pathways have been designed to produce 3-HP from a variety of feedstocks in different microorganisms. RESULTS: In this study, the 3-HP ß-alanine pathway consisting of aspartate decarboxylase, ß-alanine-pyruvate aminotransferase, and 3-hydroxypropionate dehydrogenase from selected microorganisms were codon optimized for Aspergillus species and placed under the control of constitutive promoters. The pathway was introduced into Aspergillus pseudoterreus and subsequently into Aspergillus niger, and 3-HP production was assessed in both hosts. A. niger produced higher initial 3-HP yields and fewer co-product contaminants and was selected as a suitable host for further engineering. Proteomic and metabolomic analysis of both Aspergillus species during 3-HP production identified genetic targets for improvement of flux toward 3-HP including pyruvate carboxylase, aspartate aminotransferase, malonate semialdehyde dehydrogenase, succinate semialdehyde dehydrogenase, oxaloacetate hydrolase, and a 3-HP transporter. Overexpression of pyruvate carboxylase improved yield in shake-flasks from 0.09 to 0.12 C-mol 3-HP C-mol-1 glucose in the base strain expressing 12 copies of the ß-alanine pathway. Deletion or overexpression of individual target genes in the pyruvate carboxylase overexpression strain improved yield to 0.22 C-mol 3-HP C-mol-1 glucose after deletion of the major malonate semialdehyde dehydrogenase. Further incorporation of additional ß-alanine pathway genes and optimization of culture conditions (sugars, temperature, nitrogen, phosphate, trace elements) for 3-HP production from deacetylated and mechanically refined corn stover hydrolysate improved yield to 0.48 C-mol 3-HP C-mol-1 sugars and resulted in a final titer of 36.0 g/L 3-HP. CONCLUSIONS: The results of this study establish A. niger as a host for 3-HP production from a lignocellulosic feedstock in acidic conditions and demonstrates that 3-HP titer and yield can be improved by a broad metabolic engineering strategy involving identification and modification of genes participated in the synthesis of 3-HP and its precursors, degradation of intermediates, and transport of 3-HP across the plasma membrane.

18.
Biomed Pharmacother ; 160: 114413, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36805187

ABSTRACT

Arrhythmia is characterized by abnormal heartbeat rhythms and frequencies caused by heart pacing and conduction dysfunction. Arrhythmia is the leading cause of death in patients with cardiovascular disease, with high morbidity and mortality rates, posing a serious risk to human health. Natural drugs and their active ingredients, such as matrine(MAT), tetrandrine(TET), dehydroevodiamine, tanshinone IIA, and ginsenosides, have been widely used for the treatment of atrial fibrillation, ventricular ectopic beats, sick sinus syndrome, and other arrhythmia-like diseases owing to their unique advantages. This review summarizes the mechanism of action of natural drugs and their active ingredients in the treatment of arrhythmia via the regulation of Ca2+, such as alkaloids, quinones, saponins, terpenoids, flavonoids, polyphenols, and lignan compounds, to provide ideas for the innovative development of natural drugs with potential antiarrhythmic efficacy.


Subject(s)
Atrial Fibrillation , Calcium Channels , Humans , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Atrial Fibrillation/drug therapy , Heart Rate
19.
Dev Comp Immunol ; 142: 104668, 2023 05.
Article in English | MEDLINE | ID: mdl-36774972

ABSTRACT

Argonaute (Ago) is the core component of RNA-induced silencing complex to play a crucial role in the antiviral immunity, which always cooperates with Dicer in RNA interference (RNAi) to silence the target genes. In the present study, an Ago homologue (CgAgo2) was identified in the Pacific oyster Crassostrea gigas. There were four classical functional domains in the predicted CgAgo2 protein, including an N-terminal domain, a PAZ domain, a Mid domain, and a PIWI domain. The deduced amino acid sequence of CgAgo2 shared 63.52%-84.27% identity with other Agos. Transcriptome analysis showed that CgAgo2 was highly expressed in embryonic period and gradually decreased from blastula to gastrula. The transcripts of CgAgo2 were detectable in all the examined tissues of adult oysters, with the highest expression in haemocytes (36.61-fold of that in adductor muscle, p < 0.001). The expression level of CgAgo2 mRNA in haemocytes increased significantly at 12 h after poly (I:C) and dsRNA stimulation, which were 2.71-fold (p < 0.05) and 58.00-fold (p < 0.001) of that in the control group respectively. Immunocytochemistry assay revealed that CgAgo2 proteins were mainly distributed in the cytoplasm and nucleus of haemocytes. The interaction between the recombinant CgAgo2 protein (rCgAgo2) and cleavage protein rCgDicer was observed in vitro by BLI and pull-down assays. These results indicated that CgAgo2 participated in the antiviral immunity of oyster by functioning as a component of RNA-induced silencing complex in RNAi.


Subject(s)
Crassostrea , Animals , Immunity, Innate/genetics , Gene Expression Regulation , Antiviral Agents/metabolism , RNA Interference , Poly I-C/pharmacology , Recombinant Proteins/genetics , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Hemocytes
20.
Front Pharmacol ; 14: 1265766, 2023.
Article in English | MEDLINE | ID: mdl-38249344

ABSTRACT

Background: Chinese patent medicines (CMPs) have curative effectiveness in preventing coronary restenosis. However, the relative efficacy between different CPMs has not been sufficiently investigated. Methods: Randomized clinical trials were searched from electronic databases including PubMed, Web of Science, Cochrane Library, Embase, CNKI, VIP, WanFang, SinoMed, Chinese Clinical Trial Registry, and ClinicalTrials.gov. Bayesian network meta-analysis was performed to analyze CPMs' efficacy in preventing angiographic restenosis, recurrence angina, acute myocardial infarction, and target lesion revascularization after percutaneous coronary intervention. Results: This network meta-analysis included 47 trials with 5,077 patients evaluating 11 interventions. Regarding angiographic restenosis, the efficacy of CPMs (except Xuezhikang capsule) combined with standard treatment (Std) was superior to Std alone, and Guanxin Shutong capsule plus Std reduced the risk of angiographic restenosis by 76% (relative risk 0.24, 95% confidence interval 0.11-0.45, and very low to moderate certainty of evidence), most likely the best intervention. Fufang Danshen dripping pill combined with Std showed superiority over other interventions for relieving recurrence angina, which can reduce the risk by 83% (RR 0.17, 95% CI 0.04-0.51, very low to moderate certainty of evidence) compared to Std alone. In acute myocardial infarction after percutaneous coronary intervention, compared with Std alone, Danhong injection plus Std displayed a significant effect (RR 0.11, 95% CI 0.00-0.69, very low to moderate certainty of evidence) and was the best treatment probably. Chuanxiongqin tablet plus Std was the most effective treatment for reducing target lesion revascularization by 90% (RR 0.10, 95% CI 0.00-0.60, very low to moderate certainty of evidence) compared with Std alone. Conclusion: The results indicated that CPMs combined with Std reduced the risk of coronary restenosis after percutaneous coronary intervention. However, the results should be interpreted cautiously due to significant data limitations.

SELECTION OF CITATIONS
SEARCH DETAIL
...