Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 163: 114750, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37087978

ABSTRACT

Sorafenib is the first-line therapeutic agent for hepatocellular carcinoma (HCC), but the drug resistance has become a major impediment. Previously we found that the abnormal iron metabolism in HCC led to iron deficiency, whether it induces sorafenib resistance during the treatment of HCC is not yet disclosed. In this study, we observed the effects of iron deficiency on sorafenib resistance and explored the underlying mechanisms. The results revealed that the killing effects of sorafenib on HCC cells were weakened by iron deficiency but effectively restored by iron re-supplementation. The ferroptosis indicators, including the contents of lipid hydroperoxide (LPO) and malondialdehyde (MDA), the level of intracellular reactive oxygen species (ROS), and the expression of glutathione peroxidase 4 (GPX4), were not significantly changed by iron deficiency in sorafenib-treated HCC cells. However, the sorafenib-induced apoptosis of HCC cells was inhibited by iron deficiency. Notably, the expression of anti-apoptotic protein B-cell lymphoma-2 (BCL-2) was elevated, and the expressions of other apoptotic proteins, BCL2-associated X (Bax), caspase-3, and caspase-9, were inhibited by iron deficiency. Mechanistically, iron deficiency upregulated hypoxia-inducible factor 1 alpha (HIF-1α) to increase BCL-2. Inhibition of HIF-1α suppressed the iron deficiency-induced BCL-2 and sorafenib resistance. In summary, iron deficiency in HCC cells generated sorafenib resistance by increasing HIF-1α and BCL-2, which therefore inhibited the sorafenib-induced apoptosis of HCC cells. These results identified iron deficiency as a new factor of sorafenib resistance in HCC cells, which would be an effective target to alleviate sorafenib resistance.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Iron Deficiencies , Liver Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Hypoxia-Inducible Factor 1, alpha Subunit , Iron , Liver Neoplasms/pathology , Proto-Oncogene Proteins c-bcl-2 , Sorafenib/pharmacology , Sorafenib/therapeutic use
2.
J Nutr Biochem ; 117: 109357, 2023 07.
Article in English | MEDLINE | ID: mdl-37085059

ABSTRACT

The abnormal iron metabolism in liver cancer leads to iron deficiency in tumor tissues. We previously found that iron deficiency promoted liver cancer metastasis, but the mechanisms were not fully understood. In the present study, we identified that the angiogenesis-associated glutamyl aminopeptidase (ENPEP) was consistently decreased in iron-deficient liver tissues, iron-deficient liver tumors, and iron-deprived liver cancer cells. Interestingly, the lower expression of ENPEP was correlated with the poor prognosis of liver cancer patients, while the biomarkers of angiogenesis, CD31 and CD34, were increased in tumor tissues. In vivo imaging of liver-orthotopically implanted and tail vein-injected liver cancer cells showed that iron deficiency increased the pulmonary metastasis of liver cancer. The angiogenesis in iron-deficient tumors was enhanced, and the expression of ENPEP was decreased. Silencing ENPEP expression increased the migration of liver cancer cells and the proliferation of cocultured HUVECs. By sequence analysis, we found that the transcription factor SP1 possessed abundant binding sites in the ENPEP promoter region. Its combination with ENPEP promoters was verified by chromatin immunoprecipitation. The inhibition of SP1 by mithramycin A effectively restored the expression of ENPEP, which was decreased by iron deficiency. In conclusion, these results revealed that iron deficiency in liver tumors decreased the expression of ENPEP by SP1 and increased the angiogenesis and metastasis of liver tumors, which further explained the mechanism by which iron deficiency promoted liver cancer metastasis.


Subject(s)
Iron Deficiencies , Liver Neoplasms , Humans , Cell Line , Plicamycin/pharmacology , Iron , Gene Expression Regulation, Neoplastic , Cell Line, Tumor
3.
Biol Trace Elem Res ; 201(4): 1689-1694, 2023 Apr.
Article in English | MEDLINE | ID: mdl-35614326

ABSTRACT

The sphingosine-1-phosphate (S1P) transporter spinster homolog 2 (SPNS2) promotes tumor progression by modulating tumor immunity and enhancing tumor cells migration and invasion. Previously we found that iron deficiency in hepatocellular carcinoma upregulated SPNS2 expression to increase tumor metastasis. The present study aimed to identify the underlying mechanism of SPNS2 upregulation. Since the mRNA of SPNS2 was significantly increased, we used a transcription factor activity microarray to find the transcription factor responsible for this. The results showed that iron deprivation in hepatoma cells increased the transcriptional activities of 14 transcription factors while only 2 were decreased. Among these, 3 transcription factors, HIF1α, SP1, and YY1, were predicted to bind with the transcription promoter region of SPNS2. But only HIF1α and SP1 transcriptional activities on SPNS2 were increased by iron deficiency, and the increase of SP1 transcriptional activity was stronger than HIF1α. The protein level of HIF1α was increased by iron deficiency, while SP1 was not changed at the protein level but the phosphorylation level was increased. The inhibitor of HIF1α, PX478, and the inhibitor of SP1, Mithramycin A, reversed the increased mRNA and protein expressions of SPNS2 by iron deficiency, with a more significant effect by Mithramycin A. These results provided a comprehensive view of changes in transcriptional activities by iron deficiency and identified that SP1 was the main regulator of iron deficiency-inducing SPNS2 expression in hepatoma cells.


Subject(s)
Carcinoma, Hepatocellular , Iron Deficiencies , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/genetics , Phosphorylation , Liver Neoplasms/genetics , Transcription Factors/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Anion Transport Proteins/genetics , Anion Transport Proteins/metabolism
4.
Lab Med ; 54(1): 30-34, 2023 Jan 05.
Article in English | MEDLINE | ID: mdl-35713613

ABSTRACT

OBJECTIVE: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid detection "re-positive" phenomenon is encountered clinically. The accuracy of a viral nucleic acid test is crucial to prevent reintroduction of the virus into the community. This study evaluated the effect of virus culturing on increasing the sensitivity and specificity of real-time polymerase chain reaction (RT-PCR) detection and viral genomic sequencing. METHODS: A series of tenfold dilutions of a SARS-CoV-2 viral stock were conducted and cultured for either 24 or 48 hours. The viral load of cultured samples was determined by RT-PCR. The cultured and non-cultured samples of 1x 50% tissue culture infectious dose (TCID50) were sequenced using metagenomic next-generation sequencing. The depth and coverage of SARS-CoV-2 genome were measured. RESULTS: The lowest viral load detectable in a sample with RT-PCR was 0.01 TCID50. After a 24-h culture, the viral ORF 1ab and N-gene cycle threshold (CT) values were reduced by 4.4 points and 1 point, respectively. One TCID50 viral load of post 24-h culture revealed the sequence depth reached an average of 752 reads, compared with 0.15 in the nonculture; furthermore, the coverage was 99.99% while 6.42% in the nonculture. CONCLUSION: These results indicate that virus culturing can significantly increase the viral load, which can increase the certainty of true-positive detection of the viral nucleic acids, and improve the quality of virus genomic sequencing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , RNA, Viral/genetics , COVID-19 Testing , High-Throughput Nucleotide Sequencing/methods
5.
Curr Res Food Sci ; 5: 2171-2177, 2022.
Article in English | MEDLINE | ID: mdl-36387594

ABSTRACT

The liver is easily injured by exogenous chemicals through reactive oxygen species (ROS), which lead to ferroptosis, a ROS-dependent programmed cell death characterized by iron accumulation and lipid peroxidation. However, whether iron restriction has a positive role in chemicals-induced liver injuries is unknown. The present study investigated the effects of an iron-deficient diet on liver injuries induced by alcohol or diethylnitrosamine (DEN). Mice were fed an iron-deficient diet for four weeks, then treated with three doses of alcohol (5 g/kg, 24 h interval, gavage) to mimic mild liver injury or five doses of DEN (50 mg/kg, 24 h interval, i. p.) to mimic severe liver failure. The results showed that mice were iron-deficient after four weeks of feeding. Interestingly, as evaluated by H&E staining of liver slices, liver/body weight ratio, serum ALT and AST, iron deficiency significantly alleviated liver injuries triggered by alcohol or DEN. The activities of alcohol dehydrogenase (ADH) and acetaldehyde dehydrogenase (ALDH), and the expression of CYP2E1 were increased by iron deficiency. Mechanistically, iron deficiency prevented the decrease of glutathione peroxidase 4 (GPX4), which eliminated malondialdehyde (MDA) by utilizing glutathione (GSH). In summary, alcohol- or DEN-induced liver injuries were mitigated by the iron-deficient diet by inhibiting ferroptosis, which might be a promising measure for preventing liver injuries induced by alcohol, DEN, or other exogenous chemicals.

6.
Hepatol Commun ; 6(10): 2914-2924, 2022 10.
Article in English | MEDLINE | ID: mdl-35811443

ABSTRACT

It is interesting that high iron is an independent inducer or cofactor of hepatocellular carcinoma (HCC) while the amount of iron is decreased in the liver tumor tissues. Due to the previous findings that iron deficiency promoted HCC metastasis, it is of significance to identify the underlying mechanism of iron deficiency in HCC. The tumor iron content and expressions of iron-metabolic molecules were observed in the primary liver cancers of rats and mice. The molecules that changed independently of iron were identified by comparing the expression profiles in the human HCC tissues and iron-deprived HCC cells. The downstream effects of these molecules on regulating intracellular iron content were investigated in vitro and further validated in vivo. Both in primary liver cancers of rats and mice, we confirmed the decreased iron content in tumor tissues and the altered expressions of iron-metabolic molecules, including transferrin receptor 1 (TfR1), six-transmembrane epithelial antigen of prostate 3 (STEAP3), divalent metal transporter 1 (DMT1), SLC46A1, ferroportin, hepcidin, and ferritin. Among these, STEAP3, DMT1, and SLC46A1 were altered free of iron deficiency. However, only silence or overexpression of SLC46A1 controlled the intracellular iron content of HCC cells. The interventions of STEAP3 or DMT1 could not change the intracellular iron content. Lentivirus-mediated regain of SLC46A1 expression restored the iron content in orthotopically implanted tumors, with correspondingly changes in the iron-metabolic molecules as iron increasing. Conclusion: Taken together, these results suggest that the loss of SLC46A1 expression leads to iron deficiency in liver tumor tissues, which would be an effective target to manage iron homeostasis in HCC.


Subject(s)
Carcinoma, Hepatocellular , Iron Deficiencies , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/genetics , Ferritins/genetics , Hepcidins/genetics , Humans , Iron/metabolism , Liver Neoplasms/genetics , Male , Mice , Proton-Coupled Folate Transporter , Rats , Receptors, Transferrin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...